
EdgeX Foundry Micro Service System Management
Last updated: 1/9/2018

The California release of EdgeX is expected to contain some new elements in order to support of system

management functionality.

This document describes two elements of a proposed system management capability, to be considered

for the California release. The first introduces an initial system management service API, which will be

incorporated into each existing EdgeX micro service, and required for any new EdgeX micro service. The

second describes a new system management agent (referred to as Agent in this document), that uses the

API defined in the first element, and could be used to integrate the proposed EdgeX system management

service API to alternate management systems and API.

Management Service API
The following APIs will be offered by each micro service as part of the system management capability

within EdgeX. The service APIs below do not specify additional security parameters or tokens that may

be required (depending on security implementations and requirements).

It’s assumed that many of the APIs will require some type of authentication/access-control, and

depending on sensitivity of information being collected, the Metrics API may require the same. Any such

requirements are outside the scope of this proposal, and will be handled by the EdgeX Security Working

Group.

Action API
Action API are requests for device information or micro service configuration get/set operations,

including state changes (operating and administrative states as defined below). Each micro service must

have the ability to respond to the Action API requests. These requests may come from the Agent or

other clients.

• Ping the service (no parameters required): a check to see that the micro service is reachable by

its known address and is able to respond. Ping is currently implemented by all micro services

and used as a health check endpoint by a micro service registry service.

Commented [Tony Espy1]: You need a noun after API:
functions, endpoints, ...

Commented [Tony Espy2]: Not sure what you mean by
this? Does this mean every micro service should respond to,
but not necessarily implement every endpoint defined by
this API?

Commented [Tony Espy3]: Same comment about a
bullet only on the first item, maybe drop their usage
altogether?

Note: today, the micro service registry service is fulfilled by Hashicorp’s Consul – an open source

registration and configuration software application. As with all of EdgeX, this service may be

replaced going forward, but its functionality is considered critical to EdgeX (and is considered

part of the Core Services) as well as EdgeX system management capability (and should also be

considered part of the System Management Services). Therefore, any replacement of this

service must address needs across these architectural areas.

Set the micro service’s configuration setting (aka property) (key or name and new value): set the

configuration setting for a particular dynamically adjustable setting. For this first iteration of the

APIs, the documentation for the service should note which settings are dynamically adjustable

and which are not. The dynamic nature of a configuration setting may be something that is

available via the service API.

Note: the terms configuration and property can lead to confusion and sometime have different

connotations and meanings within different IT & OT circles. Here, the term configuration refers

to a name/value pair that is used by the micro service to replace a software program placeholder

(which is a uniquely named key) with a value. The name/value pairs are used by the software at

the time the application starts and initializes, but some substitutions of the placeholders (the

named keys) may be done each time value is needed in the application – thus any change to the

configuration is used immediately by the application.

Get the micro service’s admin or operating state. (See

https://wiki.edgexfoundry.org/display/FA/Definitions for the formal definition of Admin State).

Set the micro service’s admin state (passing either locked or unlocked): set the micro service’s

administrative state. When set to locked, the micro service should not respond to any other

requests from any other service except a request to set the admin state’s back to unlocked

(responding with service not available status on any request). (See

https://wiki.edgexfoundry.org/display/FA/Definitions for the formal definition of Admin State).

Note: operating state is not something that should be “set” as it is determined from the actual

state of a service or device.

Stop (immediately) the micro service (no parameters required): a request to shutdown the

micro service as soon as possible.

“Gracefully” stop the micro service (no parameters required): a request to shutdown the micro

service as soon as all existing process requests have been handled.

Get all the micro service’s configuration settings (no parameters required): a request for all of

the service’s configuration key/value pairs (key is the setting name and value is the value of the

setting).

Commented [Tony Espy4]: Suggest bold, and line break
after previous <p>

Commented [Tony Espy5]: Maybe a better description is
“for a setting that supports writes (vs. read-only).”

Commented [Tony Espy6]: Including current a query for
current admin state?

Also, to be clear, the service will not reply with an error, it’ll
just drop the request correct?

https://wiki.edgexfoundry.org/display/FA/Definitions
https://wiki.edgexfoundry.org/display/FA/Definitions

Get all the micro service’s configurations (no parameters required): request a collection of all the

configuration keys.

Get a micro service’s configuration for a specific setting (setting key or name as a parameter):

get the configuration value for a particular setting.

Get the micro service name (no parameters required): a request for the micro service name as it

is known to all of EdgeX specifically to Config/Registry and Core Metadata micro services.

Get the micro service version (no parameters required): presuming that multiple versions of a

micro service may exist in the future, a request for the micro service version as it is known to all

of EdgeX specifically to Config/Registry and Core Metadata micro services.

There will be a “restart the micro service (no parameters required)” API that is a request to shutdown
and then start the micro service as soon as possible. Because a program will not be able to restart itself,
implementation of this feature is to be determined. It might be that the Agent (see below) performs a
stop of the existing micro service and then a start of a new instance of the micro service. It might be
that the request to restart causes the micro service to launch another copy of itself and then shut itself
down.

Alert / Notification API
Alerts or notifications are callbacks made by another EdgeX micro service (or other client such as the

Agent), for the purposes of notification of a predefined event, such as a change in state or a pre-

determined condition. The Agent may request this alert from the micro services so that it can then

inform other systems or otherwise react to system problems.

Each micro service must have the ability to retain a list of clients, each client’s list of state or condition

changes that they want to be notified of, and the callback address to connect to when the change in

state or condition happens inside of the micro service. This registry of information must be

durable/persistent – that is able to be retrieved and used on failure or restart of the micro service.

Commented [Tony Espy7]: I don’t see this as all that
useful, especially if services have to register themselves by
name both with Consul and metadb.

However as previously mentioned, I do like the idea of a
service object being returned. Why wouldn’t we mimic this
on the existing service domain object?

Commented [Tony Espy8]: I’d suggest command,
endpoint, function or request. API is the term for the entire
collection of functions.

Commented [Tony Espy9]: Will leverage native
operating system and/or container functions.

Commented [Tony Espy10]: Not a fan of this approach...

Commented [Tony Espy11]: The other approach is
resiliency, where clients notice the service went down and
just automatically re-register. It’s a simpler solution that
removes the requirement for each service to implement a
persistent state store.

To begin with, each micro service should offer alerts/notifications on the following state or condition

changes:

• Notify on change to a configuration setting (provide the key or name of the configuration setting

to watch)

Notify on change of the operating state between enabled and disabled states.

Notify on change of the admin state between locked and unlocked states.

Notify when the RAM memory usage falls outside of min/max range. Note: the accuracy of this

information will be subject to the implementation technology of the micro service (example Java

versus Go) and its capabilities. What is returned is expected to be the total memory used by the

micro service (versus something like heap space).

Additional state or condition changes may be offered via the Alert/Notification API in the future (such as
heap space versus total memory usage).

Each of the above cases, the client must provide the client callback information (along with any other
pertinent details such as the particular configuration setting of interest, or the min/max RAM range)
when registering for the alert/notification.

Metric API
A metric is defined as a time varying value of the micro service that is sampled according to a particular

interval. For example, get the amount of memory used by the micro service every 30 seconds.

Commented [Tony Espy12]: Bullet formatting is still off...

Commented [Tony Espy13]: Still not convinced this
should be the responsibility of the micro services vs. using
native OS or deployment mechanisms.

From the micro service perspective, metric collection is just another call to an Action API. It is the Agent

that must manage the collection of the data on the appointed interval(s).

The Agent must offer an API (outlined below) to allow for the creation, removal, and general

management of the metric collection.

• Add a new metric (specify the micro service and Action API to call, the metric to capture, and the

interval). Note: the collection time will be specified via CRON style string.

• Remove a metric (specify the micro service, and metric to be stopped).

In the future, some metric collection may not require communication with the micro service Action API.

In some cases, the Agent may determine the metric based on knowledge of the system, OS, etc. For

example, the request for a micro service’s CPU usage may be requested from the operating system for

the process that corresponds to the micro service.

Because of the dependency on elements outside of EdgeX Foundry micro service code, this type of

metric collection is out of scope at this time.

Any metric data collection is meant to be idempotent with regard to the micro service – meaning metric

data collection does not change the state of the micro service nor does it cause the micro service to do

anything other than report on the value of the metric data.

In the first iteration of the Metric API, the Agent (and associated micro services) must be capable of

supplying the following metrics:

• operating state (enabled/disabled),

• admin state (locked/unlocked)

• memory usage

Future versions of this API may offer metric information on CPU load, storage input/outputs per second,
communication input/output per second, number of REST error replies, number of REST request failures,
number of REST requests. Future versions of this API may also consider adding metrics for specific micro
services (or types of micro services). For example, device services may report on the number of
device/sensor requests made, or amount of time a sensor was “offline.”

Management Service Agent
The management service agent (aka Agent) translates 3rd party system management requests to EdgeX

management service API calls (see below) on EdgeX micro services. For example, it would take an

LwM2M request to check on the health of a micro service and translate that to the EdgeX ping action.

The Agent will also multiplex requests when necessary. For example, a request to “shutdown” EdgeX

from a 3rd party management system would result in requests to stop each micro service.

As an initial implementation, the Agent will simply expose the EdgeX management service API to 3rd

party systems (without translation). In other words, the Agent serves as a proxy for system management

service API calls into each micro service.

System management API calls made to the management agent must specify an additional parameter

(name) to identify the target micro service, unless the operation applies to all micro service (eg. a full

shutdown request). In the later case, the system call would be translated to individual micro service API

calls by the agent.

Time permitting, a single translation to an alternate system management API (i.e. OMA LwM2M,

DMTF/Redfish, OMA DM, TR69, DOCSIS, SNMP, etc.) would be provided.

Commented [Tony Espy14]: I still am not convinced
these are valuable as metrics vs. alerts.

The Agent will work with the assistance of the Configuration/Registry micro service, to call on any of the

management service API. By default, when EdgeX is operating as intended, the Configuration/Registry

micro service will know the location (REST IP address and port) and availability of each micro service.

This is because all micro services must initially register themselves with the Configuration/Registry

service when they start.

Given that the Configuration/Registry service knows the location of each micro service, the Agent will

need to request (by name) the location of any micro service through the Configuration/Registry micro

service when there is a need to call on a micro service’s management service API. The Agent can cache

the location of each micro service but then must avail itself to be notified when the micro service is no

longer available at its cached location.

When caching the location of each micro service, the Agent shall provide the Configuration/Registry

micro service with a callback REST endpoint address that the Configuration/Registry must call whenever

a micro service location or operational status changes.

By default, and when EdgeX is operating in good order, the Agent will call on the Configuration/Registry

micro service to get micro service location and status as described above. But, in circumstances where

the Configuration/Registry micro service is not available, the Agent will operate first on any cache

information it has, and second by a set of default locations for the micro services provided via property

file resource stored with the Agent program artifact. This behavior mirrors the use of local program

artifact application.properties in the existing micro services in the event that Consul is not available to

provide configuration to the micro services.

Management Service API Implementation
EdgeX believes in polyglot development. Therefore, each micro service can be implemented with

different technology. In order to satisfy the needs of the EdgeX management service API, a reusable

library of system management functionality should be created (and shared) in the various languages

used in EdgeX micro services.

In Go, this will mean a package of shared functions to be made part of each Go micro service. In object

oriented languages like Java, it is envisioned that the system management library will offer a base micro

service interface and corresponding base class that implements the above management service API.

The Agent and Management Service API will make up the initial “System Management” functionality

depicted in the current EdgeX architectural diagram.

Not in Scope for the Micro Service System Management
The following functionality is outside of the scope of the California release.

• Software updates.

• The Managed Object that corresponds to the underlying system and to connected devices.

