Geneva API Requests/
Responses

API Definition Principles for Specificity and Longevity

History of v1.x API

* Types marshaled as requests/responses were identical with internal
representations of state in EdgeX Foundry services

* These types were defined in the edgex-go repo along with the service
implementations

* For Edinburgh release, we split these types into go-mod-core-
contracts. Benefits include

1.) Clients no longer have to import entirety of edgex-go

2.) State internal to edgex-go can vary from request/response
contracts (persistence model types, for example)

 However we still currently have some baggage

| Just Want to Add a Device ®

type Device struct { type DeviceProfile struct { type DeviceResource struct {
Id string Id string Description string
Name string Name string Name string

LastConnected int64 DeviceResources [|DeviceResource |—1T |

A 4

DeviceCommands []ProfileResource Properties ProfileProperty

Profile DeviceProfile CoreCommands [JCommand }
Service DeviceService }
} \ 4

type DeviceService struct { type ProfileProperty struct {

Id string Value PropertyValue

Name string Units Units

LastConnected int64)

A 4

Populate ALL of this stuff and
then make sure the recursive

. e Addressable Addressable
type validations don’t fail.

...you get the idea...

Well Now You Can! ©

bddﬂeviceRequest:

description: "A request to add a new device associlated with a specific

device service and conforming to a specific device profile.™
type: object
properties:
deviceName:
type: string
serviceName:
type: string
profileName:
type: string
adminState:
type: string
operatingState:
type: string
autocEvents:
type: array
items:
$ref: '#/components/schemas/AutoEvent’
protocels:
type: object
additicnalProperties:
Sref: '#/components/schemas/ProtocolProperties’
required:
- deviceName
- serviceName
- profileName
- protocols

» Specific request type to add device

* Flattened as much as possible

* Where nested types exist, they are
part of the device definition itself and do
not refer to other primary types

» Refer to other primary types by an
identifier (in this case “Name”)

* Validation of the request is still
Encapsulated within the specific type, as
we do today.

Looking toward a v2.x API

* We do not want to go through a v3.x exercise 12 months from now

* We need basic principles we can use to define a new API
* Learn from the past
* Allow for extensibility

* Preference for defining specification before implementation
* Underway using OpenAPI 3.x specification (this is Swagger now)

Geneva APl Guidelines Proposal (Requests)

* Request definition guidelines
 GET/DELETE — The URL is the request. No additional type is needed

 POST —This is an “ADD” operation. The request type should be named
accordingly (e.g. AddDeviceRequest)

 PUT —This is an “UPDATE” operation. The request type should be named
accordingly (e.g. UpdateDeviceRequest)

* This type provides the full state of the object being updated. Partial state updates each
have their own specific routes (see later slide)

* In provided example, this type tends to be identical to the respective Add request with
the addition of the object’s ID property.

* All request types must implement self-validation

Geneva AP| Guidelines Proposal (Responses)

* In the case where an API returns a body, the content must be a
marshaled type (JSON by default). No literal string return values.

* Response definition guidelines

* GET (single item) — Return the requested type (e.g. Device)
* If requested item is not found, return a 404

GET (list) — Return an array of the requested types. MUST support pagination
via querystring parameters

* If no items were found, return an empty array (200 HTTP status code)
DELETE — No content returned, 204 HTTP status code indicates success.
POST

* If successful, return NewldResponse type (e.g. provide the ID of newly inserted record)
* If unsuccessful, return ErrorResponse type

* PUT

* |f successful, return SuccessResponse type
* |f unsuccessful, return ErrorResponse type

Geneva AP| Guidelines Proposal (Routes)
* GET

* Retrieving an item by ID or Name requires unique endpoints for each. No dual-
purposing of routes.

* Retrieving a list of items MUST support pagination via querystring parameters.

* POST

* Only used for additions of new entities

* Route should identify that entity with no additional cruft
e E.g. “/api/v2/device”

* PUT

* Only used for updates
* If updating a specific property on an entity (like Device.LastReported) values specific
to the operation should be on the Request type, not the route
» /api/v2/device/lastreported
* Example request:
e {"id":"3fa85f64-5717-4562-b3fc-2c963f66afab", "time": 123456789, "notify": true}

Geneva API Guidelines Proposal (Routes — cont’d)

* DELETE

* Deleting an item by ID or Name requires unique endpoints for each. No dual-
purposing of routes.

For Example

* |'ve tried to apply these principles to core-metadata
* https://github.com/tsconn23/edgex-geneva-api

https://github.com/tsconn23/edgex-geneva-api

