
edgexfoundry.org | @edgexfoundry

EdgeX App Functions SDK

Seoul F2F Training

Seoul Korea, April 29 – May 2, 2019

edgexfoundry.org | @edgexfoundry

Agenda

• Overview

• Why use the SDK?

• How to use the SDK
• Tutorial
• Demos
• Exercises

• What’s missing and what’s coming in Fuji

• Q&A

edgexfoundry.org | @edgexfoundry

Overview

The App Functions SDK
enables rapid development of
Golang Application Services
for EdgeX.

edgexfoundry.org | @edgexfoundry

Why use the SDK?

Integrations details:
• Messaging

• Message Bus

• HTTP

• JSON/CBOR messages

• Configuration

• Local

• Remote Registry

• Logging

• Correlation ID tracing

• Access to logging client

• System Management Telemetry

• CPU Usage

• Memory Usage

• etc.

• Events marked as exported

The App Functions SDK provides all the EdgeX integration out of the box
and some built-in functions for filtering, transforming and exporting.

LoggingConfiguration Telemetry

Message
Bus

HTTP

Built-in functions

App Functions SDK
Triggers

Filters Transforms

Filter by
Device Name

Filter by
Value

Descriptor

Transform to
JSON

Transform to
XML

Exports

Export to
MQTT

Export to
HTTP(S)
(no auth)

EdgeX Integration

Messaging

edgexfoundry.org | @edgexfoundry

How to use the SDK (Overview)
Events flow into the SDK via triggers. One or more functions (built in or custom) operate on the
data via the Functions Pipeline. The data can then be exported, returned as a response to the
trigger or both.

Developers’ main task is to create any required custom functions and setup their Functions
Pipeline. The rest is boilerplate boot strapping code.

Trigger
(bus/http)

Functions Pipeline

Function #1
(filter by device name)

Function #2
(XML Transform)

Function #3
(HTTP export)

HTTP(S)
Post

HTTP POST /
Bus Subscribe

Trigger
(bus/http)

Functions Pipeline

Function #1
(filter by value

descriptor)

Function #2
(custom converter)

Trigger
Response HTTP response

/ Bus Publish

HTTP POST /
Bus Subscribe

How to use the SDK
(Tutorial - Example)

Let's take a look at a simple example that creates a pipeline to
filter particular device ids and subsequently transform the data to

XML

edgexfoundry.org | @edgexfoundry

How to use the SDK (Tutorial - Triggers)
Triggers determine how the app functions pipeline begins execution. In the simple
example provided above, an HTTP trigger is used.

[Binding]
Type="messagebus"
SubscribeTopic="events"
PublishTopic=" “

[MessageBus]
Type = 'zero'
[MessageBus.SubscribeHost]

Host = 'localhost'
Port = 5564
Protocol = 'tcp'

[MessageBus.PublishHost]
Host = '*'
Port = 5565
Protocol = 'tcp'

[Binding]
Type="messagebus"
SubscribeTopic="events"
PublishTopic=" “

[MessageBus]
Type = 'zero'
[MessageBus.SubscribeHost]

Host = 'localhost'
Port = 5564
Protocol = 'tcp'

[MessageBus.PublishHost]
Host = '*'
Port = 5565
Protocol = 'tcp'

Message Bus Trigger
 A message bus trigger will execute the pipeline every

time data is received off of the configured topic.
 Message bus connection configuration must be

specified

Important Note: Publish Host for ZMQ MUST be different for every topic you wish to publish to since the SDK will bind to the specific port. 5563 for example cannot be used to
publish since EdgeX Core Data has bound to that port. Similarly, you cannot have two separate instances of the app functions SDK running publishing to the same port.

[Binding]
Type="http"
[Binding]
Type="http"

HTTP Trigger
 Designating an HTTP trigger will allow the pipeline to

be triggered by a RESTful POST call to
http://[host]:[port]/trigger/.

 edgexcontext.complete([]byte outputData) - Will
send the specified data as the response to the
request that originally triggered the HTTP Request.

edgexfoundry.org | @edgexfoundry

How to use the SDK (Tutorial - Misc)
• Configuration

 The ApplicationSettings API returns a map[string] string containing the
contents on the ApplicationSetting section of the configuration.toml file.

• Error handling
 Each transform returns a true or false as part of the return signature. This is

called the continuePipeline flag and indicates whether the SDK should
continue calling successive transforms in the pipeline.

 return false, nil will stop the pipeline and stop processing the event. This is
useful for example when filtering on values and nothing matches the criteria
you've filtered on.

 return false, error, will stop the pipeline as well and the SDK will log the
errorString you have returned.

 Returning true tells the SDK to continue, and will call the next function in the
pipeline with your result.

[ApplicationSettings]
ApplicationName = "advanced-filter-convert-publish"
ValueDescriptors = "RandomValue_Float32, RandomValue_Float64"

[ApplicationSettings]
ApplicationName = "advanced-filter-convert-publish"
ValueDescriptors = "RandomValue_Float32, RandomValue_Float64"

edgexfoundry.org | @edgexfoundry

How to use the SDK (Demo)
https://github.com/edgexfoundry/app-functions-sdk-go/blob/master/examples/advanced-filter-convert-publish/README.md

edgexfoundry.org | @edgexfoundry

How to use the SDK (Hands on Exercise)

edgexfoundry.org | @edgexfoundry

What missing and what’s coming in Fuji?
The following are being considered for the Fuji release

• Archive the current Export Services and Export Client micro service
 App functions SDK at minimal parity

• Send data to the rules engine
• Provide tutorials on how to build a cloud-supporting endpoint (Azure, AWS, etc.
• Provide Vault integration (request secrets)
• Expand triggers: Timer based
• Expand current set of built in transforms

 Filters (Value ranges, location based/geo-fenced, De-duplication values,
Eliminate noise from readings, Time based)

 Format transforms (CSV, YAML, TOML, RAML)
 Data Transform (Unit conversion, Cloud ready i.e. Azure, AWS, etc.)
 Encryption (payloads) – depends on vault integration
 Signing – depends on vault integration – near last step in pipeline
 Compression (ZIP, TAR.GZ, Lossy vs lossless compression)
 Media transformation (JPG to GIF, MPEG to WAV, etc)
 Enrich (metadata additions, commands, ...)
 Additional endpoints – maybe additional protocols
 HTTPS and MQTTS (with token exchange via OAuth, JWT, ...)

• EdgeX device commands to the north side from the Cloud

Q&A

edgexfoundry.org | @edgexfoundry

Thank you!

Backup

edgexfoundry.org | @edgexfoundry

Core
Data

Core
Meta-Data

Other
Core Services

Device Virtual

Device
SDK

Message Bus (ZMQ)

Publish
“events”

App Service 1

App Functions
SDK

Subscribe
“events”

Publish
“converted”

App Service 2

App Functions
SDK

Subscribe
“converted”

Cloud
EndpointHTTP(S)

Post

Core
Command

auto events
float32/float64

command
Triggered
events
int32

Int32
command

Int32
command

edgexfoundry.org | @edgexfoundry

LoggingConfiguration Telemetry

Message
Bus

HTTP

Built-in functions

App Functions SDK
Triggers

Filters Transforms

Filter by
Device Name

Filter by
Value

Descriptor

Transform to
JSON

Transform to
XML

Exports

Export to
MQTT

Export to
HTTP(S)
(no auth)

EdgeX Integration

Messaging

edgexfoundry.org | @edgexfoundry

edgexfoundry.org | @edgexfoundry

Core
Data

Core
Meta-Data

Other
Core Services

Device Virtual

Device
SDK

Message Bus (ZMQ)

Publish
“events”

Advanced
Example

App Functions
SDK

Subscribe
“events”

Publish
“converted”

Simple Filter/XML
Example

App Functions
SDK

Subscribe
“converted”

Core
Command

auto events
float32/float64

Publish
“xml”

edgexfoundry.org | @edgexfoundry

Core
Data

Core
Meta-Data

Other
Core Services

Device Virtual

Device
SDK

Message Bus (ZMQ)

Publish
“events”

Advanced
Example

App Functions
SDK

Subscribe
“events”

Publish
“converted”

Simple Filter/XML
Example

App Functions
SDK

Subscribe
“converted”

Core
Command

auto events
float32/float64

Publish
“xml”

Int32
command

Int32
command

edgexfoundry.org | @edgexfoundry

How to use the SDK (Overview)
• The SDK is built around the idea of a “Functions Pipeline".

• A pipeline is a collection of various functions that process the
data in the order that you've specified.

• The pipeline is executed by the specified trigger in the
configuration.toml.

• The first function in the pipeline is called with the event that
triggered the pipeline (ex. events.Model).

• Each successive call in the functions pipeline is called with the
return result of the previous function.

