
Movable Device Provisioning
EdgeX Foundry – Geneva Release

Use Case

• Device moves from Device Service 1 to Device Service 2
• Example: a wearable device on a person that moves from building to

building
• How best to define an API to support this?
• Note – At the time of writing, design on Geneva’s “Provision

Watcher” API is not finalized
• Assumption – Transport shown in these use cases is REST API. Review

with an eye toward possibility of pub/sub.

Option 1: Implicit Re-assignment

Device
Service 2

Core-
Metadata DB

POST /api/v2/device

{AddDeviceRequest}
Does device exist?

Yes, it exists (unique name check)

Re-assign to new device service

OK

HTTP 200 -- OK

{AddDeviceResponse}

Device
Service 1

PUT /api/v2/device
{RemoveDeviceRequest}

HTTP 200 -- OK
{RemoveDeviceResponse}

** Problematic if this
interaction fails.
See slide 6 **

Option 1: Pros / Cons

• Pros
Less effort for clients to integrate. In fact this can be done with minor changes to

the current API
Reconciliation of device to service association centralized in core-metadata

• Cons
Re-assignment of device to new service is implicit via dual-purpose endpoint
Less granular observability
Notification to Device Service 1 could fail, orphaning device (possible issue today)
Knowledge of how to interpret a 409 conflict on the Device Service’s behalf is in Core-Metadata.

Doesn’t seem like the right responsibility.

Option 2: Explicit Re-assignment
Device
Service 2

Core-
Metadata DB

POST /api/v2/device

{AddDeviceRequest} Does device exist?

Yes, it exists (unique name check)

Re-assign to new device service

OK

HTTP 200 -- OK

{AddDeviceResponse}

Device
Service 1

PUT /api/v2/device
{RemoveDeviceRequest}

HTTP 200 -- OK
{RemoveDeviceResponse}

HTTP 409 -- Conflict

POST /api/v2/device/reassign
{ReassignDeviceRequest}

{ReassignDeviceResponse}

GET /api/v2/device/biometric123 Load the device record

{Device}

** Problematic if this
interaction fails.
See next slide **

** Used to compare new service name with that
Currently on the device. If different, re-assign **

Option 2: Pros/Cons

• Pros
Explicit differentiation between “AddDevice” and “ReassignDevice”

b/c of need to handle 409
Following from above, more granular observability
Separation of concerns – from core-metadata’s perspective, does a conflict always

result in a device reassignment? Device Service can make this decision.

• Cons
Interaction between DeviceService and Core-Metadata is a bit more complex

due to explicit contract
Doesn’t resolve possibility for orphaned device due to failed notification to DS1

Option 2a: Explicit Re-assignment
Device
Service 2

Core-
Metadata DB

POST /api/v2/device

{AddDeviceRequest} Does device exist?

Yes, it exists (unique name check)

Re-assign to new device service

OK

HTTP 200 -- OK

{AddDeviceResponse}
HTTP 409 -- Conflict

POST /api/v2/device/reassign
{ReassignDeviceRequest}

{ReassignDeviceResponse}

GET /api/v2/device/biometric123 Load the device record

{Device}
Device
Service 1

PUT /api/v2/device

{UpdateDeviceRequest}

HTTP 200 -- OK
{UpdateDeviceResponse}

** Device model wraps current addressable **

** Re-assignment through Device Service 1 in
attempt to provide more atomic workflow. Core-
Metadata is kept in sync and Device Service 1 cleans
its device cache upon receipt of 200 OK**

Option 2a: Pros/Cons

• Pros
See Option 2 “pros” previous slide
Mitigation of orphaned devices by ensuring reassigned device is cleared from

original device service before being re-assigned
Further delegation of how to interpret a conflict (409) status to the Device Service

• Cons
Interaction between DeviceService and Core-Metadata is a bit more complex

due to explicit contract
Development overhead to introduce DS to DS communication, expands requisite

testing

