
Napa (version 3.1) marks the 13th community release of EdgeX and was formally released in November 2023.
The key new features added in Napa are described on the EdgeX Community Wiki.

This report aims to provide EdgeX users with important performance information that can guide solution development
and deployment strategies. The information also helps the EdgeX development community to ensure the platform
remains suitable for lightweight edge deployments and can help to identify future performance targets.

The performance metrics described in this report relate to data obtained on the following hardware platform:
•	 Dell 3200 Edge Gateway EGW-3200
•	 Intel Atom x6425RE 1.9GHz processor
•	 7.2GB RAM
•	 Ubuntu 20.04 LTS

EdgeX Foundry Performance Report

Napa 3.1 Release
November 2023

 www.edgexfoundry.org

This document is provided by IOTech for the EdgeX Foundry © 2023

https://wiki.edgexfoundry.org/display/FA/Napa
http://www.edgexfoundry.org

EdgeX Foundry Deployment Options

22

Since EdgeX consists of a set of required and
optional microservices, this report provides
performance data and resource usage relating to two
EdgeX deployment classifications:

Typical EdgeX deployment

A typical EdgeX deployment provides all of the
microservices as envisioned by the original
architects. This includes microservices for ingesting
data from different edge protocols, edge decision
making, notifications and alerts, device actuation and
streaming to a cloud or IT endpoint. A typical EdgeX
deployment also includes the full EdgeX security
services.

Minimal EdgeX deployment
A minimal EdgeX deployment provides only the
microservices needed to ingest data from a single
edge protocol and stream that data northbound
to a cloud or IT endpoint. A minimal deployment
may implement alternative security approaches to
the EdgeX security services that are provided as
standard.

The EdgeX Foundry platform is a collection of modular microservices that each perform a specific role at the IoT edge. While some EdgeX microservices are used in almost
all deployments of the platform (e.g. the Core Services), the specific set of microservices needed will depend on the exact requirements of each use case.

This document is provided by IOTech for the EdgeX Foundry © 2023

3

Microservice EdgeX Deployment Name Description

CORE SERVICES

Core Data edgex-core-data Optional data store for readings collected by devices and sensors

Core Metadata edgex-core-metadata Used by other services for knowledge about the devices and how to communicate with them

Core Command edgex-core-command Optional invocation of devices on behalf of other services, applications or external systems

Database edgex-redis The default database, implemented via Redis

Configuration & Registry edgex-core-consul Optional centralized service configuration, implemented via Consul

REST Device Service edgex-device-rest For interacting with edge devices that provide a REST-based API

Virtual Device Service edgex-device-virtual For simulating device data

Rules Engine edgex-kuiper Reference rules engine implemented by EMQ X Kuiper

Support Notifications edgex-support-notifications Delivers notifications to inform of important system events

Support Scheduler edgex-support-scheduler Executes operations on a configured interval or schedule

API Gateway edgex-nginx Provides a single point of authorized entry for all EdgeX REST traffic

API Gateway Setup edgex-security-proxy-setup Service required to configure the API Gateway

Secret Store edgex-vault Central repository to securely store EdgeX tokens, passwords and certificates etc

Secret Store Setup edgex-security-secretstore-setup Service required to configure the Secret Store

Security Bootstrapper edgex-security-bootstrapper Provides secure activation of the EdgeX security services

The EdgeX Microservices

Note that many other Device Services are available both in EdgeX and provided by commercial vendors (e.g., Modbus, BACnet, OPC UA, BLE, PLC protocols, etc)

DEVICE SERVICES

APPLICATION SERVICES

SUPPORTING SERVICES

App Service Configurable edgex-app-service-configurable Application Service that can be configured to execute built-in transform and export functions

SECURITY SERVICES

This document is provided by IOTech for the EdgeX Foundry © 2023

EdgeX Memory Footprint
Each EdgeX microservice is typically implemented in either Go or C and then compiled into an executable which has a size or footprint as it sits on disk. For convenient
deployment and orchestration, each microservice executable can also be built into a Docker container image so it can be run as a standalone service with less dependencies
on the host. This greatly improves portability and platform independence.

Both containerized Docker image footprint data and non-containerized executable footprint data is measured and shown below.

Microservice Image Footprint (MB) Executable Footprint (MB)

edgex-core-data 27.98 13.91

edgex-core-metadata * 28.35 14.28
edgex-core-command 27.80 13.72
edgex-redis * 35.90 N/A
edgex-core-consul 193.68 N/A

edgex-device-virtual 40.76 26.66
edgex-device-rest * 40.75 26.66

edgex-support-notifications 41.63 26.83
edgex-support-scheduler 40.79 26.72
edgex-kuiper 68.47 N/A

edgex-app-service-configurable * 41.45 26.63
Security Services
edgex-nginx 16.96 N/A
edgex-security-proxy-setup 36.03 N/A
edgex-vault 381.43 N/A
edgex-security-secretstore-setup 51.32 N/A
edgex-security-bootsrapper 29.97 N/A

TOTAL 1103.27 MB

Note: The executable footprint is not recorded for third-party open source
services (Redis, Consul, Kuiper, etc) so N/A is listed for those services.

4

Typical Deployment

The footprint for a typical EdgeX deployment using Docker containers is
approximately 1100 MB. This includes the configuration service, the command
service, two device services, all supporting services and all security services.

Minimal Deployment

The footprint for a minimal EdgeX deployment using Docker containers is
approximately 146 MB. These services are marked in the table opposite with an
asterix (*).

This document is provided by IOTech for the EdgeX Foundry © 2023

Please see the following page for mechanisms available to help
further reduce the footprint of some of the EdgeX microservices.

Mechanisms to Minimize Memory Footprint
Note that EdgeX Foundry currently provides pre-built container images that provide full functionality for the user. The above footprint values, therefore, represent the full and
flexible capability of EdgeX such as providing different options for the internal EdgeX message bus (e.g. ZeroMQ, MQTT and Redis Pub/Sub) and optional security features
such as the Delayed Start capability. However the nature of the Go language (in which EdgeX is largely implemented) is that Go libraries must be referenced in a Go Module
file and therefore contribute to footprint size, whether they are actually utilized by the user or not during runtime.

This document is provided by IOTech for the EdgeX Foundry © 2023

Configurable Build Steps

Providing pre-built images containing all EdgeX functionality is simple
and convenient for many EdgeX adopters. However, some users,
particularly those targeting deployments on smaller gateways or other
resource constrained devices, would prefer the option to conditionally
choose which optional features to build into the EdgeX images.

See opposite for how EdgeX allows the Delayed Start functionality to be
included or excluded in the EdgeX images.

Ongoing Footprint Considerations

An aim of the EdgeX Technical Steering Committee is to continue
to improve and enhance EdgeX, but always be mindful of footprint
considerations. As such, this approach of providing conditional
build steps will continue to be utilized where possible when optional
EdgeX functionality requires the additional of significantly large
library dependencies. EdgeX adopters will still be able to rebuild the
microservices to their own specific requirements, while commercial
suppliers of EdgeX can provide their customers with pre-built
microservice images that match their needs.

Example: Delayed Start

Delayed Start allows for services to be added and started at anytime and still receive
security tokens without the need for a restart of the whole platform.

Analysis found that go-spiffe, the Go library that provides the Delayed Start capability,
contributes to a footprint rise of approximately 15 MB for each EdgeX microservice. This
can be significant especially when not every EdgeX use case requires the functionality.

An optimization since EdgeX 2.2 is to provide the Delayed Start capability, by default,
in only the EdgeX microservices where it is most likely to be utilized. The EdgeX Core
Working Group concluded that Delayed Start should be included in the default pre-
built images of the Device Services, Supporting Services and Application Services, but
excluded from the default pre-built images of the Core Services. This is because the Core
Services are unlikely to be started or restarted after the EdgeX platform is running.

However note that these are just defaults. The code has been rationalized such that
EdgeX adopters are able to easily rebuild the EdgeX microservices to include or exclude
the Delayed Start capability without major effort. Users wishing to rebuild the Core
Services to include the Delayed Start capability functionality would see rises of around
15 MB per service. Likewise, users wishing to rebuild the Device Services, Supporting
Services and Application Services without this capability would see a decrease of around
15 MB per service.

See the EdgeX Secrets Module for further information on this feature.

4

5

https://github.com/edgexfoundry/go-mod-secrets/blob/main/README.md

EdgeX CPU Consumption
Each EdgeX microservice has its CPU consumption measured as it is started as a Docker container. The CPU usage is reported by the Docker engine and is measured as a
percentage of the available CPU on the machine. In general, the measure of usage at startup is a good indication on the upper bound for many of the services. Note that the
characteristics of different chip architectures may affect the CPU utilization.

6

Microservice Maximum (%) Minimum (%) Average (%)

edgex-core-data 0.41 0.00 0.07

edgex-core-metadata * 0.14 0.00 0.04
edgex-core-command 0.14 0.00 0.05
edgex-redis * 0.40 0.23 0.26
edgex-core-consul 1.56 0.54 0.97

edgex-device-virtual 0.30 0.00 0.07
edgex-device-rest * 0.03 0.00 0.00

edgex-support-notifications 0.31 0.00 0.05
edgex-support-scheduler 0.25 0.05 0.09
edgex-kuiper 0.67 0.00 0.08

edgex-app-service-configurable * 0.64 0.00 0.15

edgex-nginx 0.00 0.00 0.00
edgex-security-proxy-setup 0.00 0.00 0.00
edgex-vault 0.95 0.56 0.82
edgex-security-secretstore-setup 0.01 0.00 0.00
edgex-security-bootstrapper 0.01 0.00 0.00

TOTAL 5.82 1.38 2.65

Typical Deployment

Maximal CPU usage recorded for a typical EdgeX deployment using Docker
containers on the test hardware is approximately 5.8%. This includes the
configuration service, the command service, two device services, all supporting
services and all security services.

Minimal Deployment

Maximal CPU usage recorded for a minimal EdgeX deployment using Docker
containers on the test hardware is approximately 1.2%. These services are marked
in the table opposite with an asterix (*).

This document is provided by IOTech for the EdgeX Foundry © 2023

EdgeX Memory Consumption
Each EdgeX microservice has its memory consumption measured as it is started as a Docker container. The memory consumption is reported by the Docker engine and is
measured in Megabytes (MB). In general, the measure of usage at startup is a good indication on the upper bound for many of the services.

7

Microservice Maximum (MB) Minimum (MB) Average (MB)

edgex-core-data 11.44 8.81 11.02

edgex-core-metadata * 11.40 11.35 11.39

edgex-core-command 9.23 8.90 9.10

edgex-redis * 3.53 3.20 3.37

edgex-core-consul 49.31 43.87 45.83

edgex-device-virtual 11.57 11.33 11.53

edgex-device-rest * 11.43 11.24 11.40

edgex-support-notifications 11.37 8.58 10.74

edgex-support-scheduler 9.84 9.45 9.53

edgex-kuiper 9.51 9.10 9.23

edgex-app-service-configurable * 11.44 9.57 11.21

edgex-nginx 5.52 5.52 5.52

edgex-security-proxy-setup 0.00 0.00 0.00

edgex-vault 161.33 161.09 161.31

edgex-security-secretstore-setup 8.81 8.35 8.67

edgex-security-bootstrapper 9.41 8.92 9.31

TOTAL 335.14 319.28 329.16

Typical Deployment

Maximal memory consumption recorded for a typical EdgeX deployment using
Docker containers on the test hardware is approximately 335 MB. This includes
the configuration service, the command service, two device services, all supporting
services and all security services.

Minimal Deployment

Maximal memory consumption recorded for a minimal EdgeX deployment using
Docker containers on the test hardware is approximately 38 MB. These services
are marked in the table opposite with an asterix (*).

This document is provided by IOTech for the EdgeX Foundry © 2023

8

EdgeX Startup Times

The startup times are measured for each of the microservices developed by the EdgeX Foundry community, both with and without the security services enabled.

Startup times include any overhead associated with creating the Docker containers in which the microservices run. Note that the metrics are obtained while starting all
microservices at the same time so any dependencies between the services starting are included in the data. The total time recorded is the time taken for all of the services to
be started, rather than a sum of all individual startup times.

Microservice Average with Security (s) Average without Security (s)

edgex-core-data 37.56 17.39

edgex-core-metadata * 37.09 17.54
edgex-core-command 37.92 19.66

edgex-device-virtual 37.75 17.75
edgex-device-rest * 37.68 19.45

edgex-support-notifications 37.88 19.45
edgex-support-scheduler 37.87 19.02

edgex-app-service-configurable * 37.74 17.91

TOTAL 38.12 22.05

Typical Deployment

The average startup time recorded for a typical EdgeX deployment
using Docker containers on the test hardware is approximately
38 seconds This includes the configuration service, the command
service, two device services, all supporting services and all security
services.

Minimal Deployment

The average startup time recorded for a minimal EdgeX
deployment using Docker containers on the test hardware is
approximately 22 seconds. These services are marked in the table
opposite with an asterix (*).

Note also that services can of course be started and stopped as
EdgeX runs. In this case it is not necessary to create a new Docker
container for each service. Restarting an already-created Docker
container can reduce the startup overhead.

This document is provided by IOTech for the EdgeX Foundry © 2023

9

EdgeX Operational Latency

Ping Response Times
The ping response times are measured for each of the microservices developed by
the EdgeX Foundry community and represent the reactivity of each service when it
receives an external HTTP/REST request. The tests are ran both with the services
behind the API Gateway and then without security enabled.

Microservice Request Latency
(API Gateway Security)

Request Latency
(No Security)

edgex-core-data 31.35 2.41

edgex-core-metadata 31.22 2.40
edgex-core-command 31.28 2.38

edgex-device-virtual 30.87 2.39
edgex-device-rest 30.80 2.37

30.87 2.39
edgex-support-scheduler 31.27 2.42

edgex-app-service-configurable 30.77 2.33

Ping response times recorded on the test hardware are consistently around 31ms
when the API Gateway is included. Without the API Gateway, response times are
consistently around 2ms.

Virtual Device Attribute Average with
Security (ms)

Average without
 Security (ms)

Random-Integer-Device 6.2 7.1

Random-UnsignedInteger-Device 5.0 6.8
Random-Boolean-Device 3.8 4.2

The Virtual Device data is delivered through the EdgeX platform on the test
hardware at an average latency of approximately 4-7 ms. There is no discernable
latency overhead when EdgeX security is enabled.

Data Export Latency
Data export latency represents the time it takes to collect EdgeX data from the
“southside” devices & sensors and deliver it through the platform to the “northside”
applications.

The latency reported here relates to the Virtual Device Service, which simulates
3 different data attributes. Each Device Service type (Modbus, BACnet, etc), will
obviously have its own data rates associated with collecting the data from the
physical edge devices or sensors, but the Virtual Device provides useful indicative
performance data. It is planned to provide performance relating to more Device
Service types in future versions of EdgeX.

Average Response Time (MS)

edgex-support-notifications

This document is provided by IOTech for the EdgeX Foundry © 2023

Copyright © 2023 The Linux Foundation®. All rights reserved. The Linux Foundation has registered trademarks and uses
trademarks, including for EdgeX Foundry. For a list of trademarks of The Linux Foundation, please see our Trademark Usage page.
Linux is a registered trademark of Linus Torvalds. Privacy Policy and Terms of Use.

This document was produced by IOTech Systems
who are key leaders and contributors to the EdgeX
Foundry community.

Edge Central is is IOTech's commercial edge platform
product based on open-source EdgeX. Key value-add
features include:

Contact Us
For general information about EdgeX Foundry, or membership inquiries, please email info@lfedge.org

Visit our website at www.edgexfoundry.org

Test Methodology
All EdgeX microservices were run with their default configurations. In order to provide accurate and reliable
statistics the tests were ran as follows:

•	 The CPU and memory consumption metrics were gathered by obtaining the data 10 times at an interval of 7
seconds between each measurement

•	 The startup time data was obtained by starting the EdgeX microservices 5 different times

•	 The ping response test was performed 100 times for each EdgeX microservice

•	 The data export latency metric was performed 10 times for each of the Virtual Device attributes

The full raw performance metrics, as well as data for other hardware platforms, is provided on the
EdgeX Community Wiki

•	 Industrial OT device support
•	 Advanced user-friendly graphical tooling
•	 Edge storage, rules, analytics and dashboarding
•	 Out-of-the-box Cloud and IT connectors
•	 Edge management at scale

IOTech also provide ultra lightweight and embedded
OT device connectivity via its Edge Connect product.

If you have questions about this report or would like
more information on IOTech or its products, email
info@iotechsys.com or visit the website
www.iotechsys.com

https://www.iotechsys.com/products/edge-central/
mailto:info%40lfedge.org?subject=RE%3A%20EdgeX%20Performance%20Report%20Kamakura
http://www.edgexfoundry.org
https://wiki.edgexfoundry.org/display/FA/Napa+Data
https://www.iotechsys.com/products/edge-connect/
mailto:info%40iotechsys.com?subject=RE%3A%20EdgeX%20Performance%20Report%20-%20Kamakura%20Release
http://www.iotechsys.com

