
 
 

 
 

 

Data Persistence Project Group (Inaugural) Meeting – 8/14/18 
Attendees:  Brett, Michael (LF), Alberto (NOV), Emad (), Fede (Cavium), Itamar Haber (Redis), Janko 

(Mainflux) Trevor, Chandra, Jim, Tom Pool, Jeroen Mackenbach, Emad Attia, Eric (Dell), Bruce Huang , 

Edward Scott, Andy, Steve (IoTech), Markus (ObjectBox).  Attendees that may have joined after the start 

of the meeting may not have been captured and listed. 

Discussion and action items as a result of meeting in RED 

Old Business 
 New meeting time was based on consensus vote 

o No objections – meeting time will stand for future meetings 

 Continuation of requirements discussion 
o NOV requirements (oil&gas) 

 5 to 50K writes per second (depends on use case / device) 
 Majority are between 100-3000 on average writes per second 

 Size: Kilobytes per message 
 Reads are 10-20% of writes; while not a large number of reads, these do need to be 

efficient 

 Interest in workloads – what you are reading may be more important than 
just a simple read (get all reads or events) 

 Size of database on disk is not really an issue 
 RAM and CPU usage are the biggest concerns (Mongo gave them problems on 

these) 
 Startup time was also a concern (again Mongo problem) 
 Data is stored for up to 6 months on the edge (they have means to deal with too 

much or lost data at the edge) 
 Prefer to not embed the database – prefer flexibility to change and to distribute 

elsewhere 
 They don’t have binary data, but use protobuf for Readings. 

o Hitachi Ventara 
 high ingress data @0.1 sec/message 

o Per last meeting 
 RFID Use case:  100+ / sec sensor reads 
 Building automation use cases:  1000+/sec  

o From Chandra Venkatapathy @ Dell 

 
o Current Must haves 

Data source Sampling Rate Order of Volume of data collected in sec Column1

Line Fault detection in electric grid in Micro second Bytes, Kilo Bytes Usually an interface between

Response in second

Vibration Sensors in msec/ sec Bytes, KB

Pressure Sensors in msec/ sec Bytes, KB

PLC in msec/ sec Bytes, KB

CNC Machines in msec/ sec KB, MB

CAN Bus in msec/ sec MB

Building Automation Applications in msec/ sec Bytes, KB

Locomotive Telemetry in msec/ sec KB, MB

RTU in Utility in msec/ sec KB, MB



 

 
 
 

 License of product – compliant with Apache 2 
 Store and forward needs 
 Platform support: 

 Intel , ARM 64 bit 

 OS support:  Linux, Unix, Windows, MacOS – those EdgeX has targeted 
 Support for batch writes is important 

 But this might require API changes 
 Performance 

 Need a holistic view.  Small but slow is not acceptable. 

 Memory size, footprint, CPU, network?  What is size?  All these must be 
taken into consideration together. 

 Typically Prioritize writes over reads in performance 

 Concern impact of backup processes 
 Durable across EdgeX shutdown 
 Run in a container (Docker/Kubernetes/Snap/etc.) 

 Has to manageable from one control plane 

 Embedded might be considered by some, flexibility is more important to 
most (ability to easily swap out the database with proper app abstraction), 
and ability to distribute to alternate platform from micro services 

 Secure 

 Password protected 

 Supports data encryption (protect data at rest) 

 At least what we have in Mongo 
 Has Java, Go, C, C++ drivers/connectors 
 Community support and user-base size 

 How to quantify? 

 Number of github stars 

 Enterprise deployment support/support for commercial deployment (nice 
to have) 

 Binary support (as long as we can identify what type of binary) 

 Max size (up 16MB) 
 Most use cases store data for day, a week not months 

 Capture quickly and ship it off 

 Provide enough data for historical back look for local actuation 

 Up to 10M data points on average; 100M max 

 Use case would dictate platform and architecture to deal with more or less 
o Nice to haves 

 User administration / usability 

 Has ability to integrate to identity management 
 NoSQL (versus SQL) – assumed NoSQL given data types/objects; but immaterial 

otherwise 

 From Eric Cotter post meeting:  Wouldn’t you want to at least bench mark 
SQL in some fashion to show it as a contrast “not justification per say” for 
using a NoSQL DB?  A lot of the commercial players may want to see that for 
justifying purchasing a NoSQL. 

 Synch capability 



 

 
 

 Careful not to exclude non-enterprise solutions with this nice to have 
 Backup support 

 Again, careful not to limit to enterprise systems 
 Transactional (ACID) or Eventual Consistent (which CAP axis)? 

 Availability and partition tolerance are priority 

 Totally use case dependent 
 Support multi-tenancy 

 Again use case/market driven 

 May not apply at the edge 
 32 bit support (Intel or ARM) 
 Database that also runs in memory 

 Should we start collecting potential options and can someone lead that effort 
o Could we have some sort of use case dependent data feed to simulate how the database 

perform; test harness 
 Could we get implementers of PRs to volunteer to help setup that test harness per 

database of their choice 
 Topic for next week – how to evaluate 

o Not a review or evaluation at this stage, just a list of potential databases 
 MongoDB (use as our baseline) 
 Mongo Mobile 
 Redis 
 Influx – may not be general purpose; wouldn’t support something like metadata, 

export, etc. 
 Cassandra –heavy?  Needs 1GB of memory; more of a cloud target 
 CouchDB 
 Couchbase – research on which version  
 ObjectBox 
 If we have volunteer to do work then look at SQL options 

 Postgres 

 MySQL 

 SQLite 

 CockroachDB – is this a cloud SQL database; can’t run in single node config? 

New Business 
 We need benchmarks/performance testing – at data level; on the simple and complex queries, 

multiple types of writes, etc. 

 Need test on multi-threaded , concurrent uses – simulating multiple clients (load tests) 


