
edgexfoundry.org | @edgexfoundry

Building a Device Service using the Go SDK
Seoul F2F Technical Training

Tony Espy <espy@canonical.com>
Cloud Tsai <cloud@iotech.com>

Toby Mosby <tobias.mosby@intel.com>

April 30, 2019

mailto:espy@canonical.com

edgexfoundry.org | @edgexfoundry

EdgeX Foundry - Architecture

edgexfoundry.org | @edgexfoundry

What's a Device Service?

● A device service (DS):
○ supports a specific device or class of devices/sensors
○ is a bridge that connects devices & sensors to EdgeX
○ provides REST API endpoints used by other EdgeX services

■ read data from devices/sensors
■ write data to devices/sensors

○ pushes device/sensor Events & Readings to Core Data
■ asynchronously (push)
■ on-demand (via REST calls)
■ scheduled (via AutoEvents)

edgexfoundry.org | @edgexfoundry

What's a Device Profile?

● A Device Profile is a model in Core Metadata which:
○ represents a class of devices/sensors supported by a DS
○ defines some basic metadata (name, description, …)
○ defines a set of basic values that can be read/written
○ defines a set of commands for reading/writing values from a

device/sensor
○ defines additional metadata used by Core Command

edgexfoundry.org | @edgexfoundry

What's a Device Profile (continued)?

● Device profiles can be imported:

○ device-sdk-go

■ via YAML file import

■ read from the same directory as local configuration (/res)

○ Core Metadata:

■ upload YAML device profile files via a REST endpoint

■ import JSON device profile via REST endpoint

edgexfoundry.org | @edgexfoundry

What's a Device Profile (continued)?

● A device profile has four sections:

○ Basic metadata (name, manufacturer/model, description, …)

○ Device Resources

○ Device Commands

○ Core Commands

edgexfoundry.org | @edgexfoundry

What's a Device Profile (continued)?

● Device Resources and Device Commands sections defines the list

of "commands" that are useable with the "device" REST endpoint:

○ /device/{id}/{command}

○ /device/name/{name}/{command}

● GET requests to these endpoints return an Event and one or more

Readings (which hold device resource values)

○ ...and also trigger the Event/Readings to be pushed to Core

Data

edgexfoundry.org | @edgexfoundry

What's a Device Profile (continued)?

● PUT requests to these endpoints perform writes to the underlying

device resource(s)

edgexfoundry.org | @edgexfoundry

Device Resources

● A readable/writable named value on a device or sensor
● Supports a basic set of types:

○ string
○ bool
○ int8 | int16 | int32 | int64
○ uint8 | uint16 | uint32 | uint64
○ float32 | float64

■ encoded using base64 or C-style ("3.2165e+2")

○ binary
● Used to create a value descriptor object in Core Data

edgexfoundry.org | @edgexfoundry

Device Commands

● Device commands allow aggregation of device resources

○ i.e. a single device command can read/write multiple device

resources in a single REST* call

● Device commands defintions include lists of GET and SET

commands called Resource Operations which reference Device

Resources.

edgexfoundry.org | @edgexfoundry

Core Commands

● The Core Command section defines commands that are usable
with the Core Command "command" REST endpoint:

○ /device/{id}/command/{command}:

○ /device/name/{name}/{command}

● These commands also define:

○ expected values (i.e. value descriptor names)

○ expected REST response codes (e.g. 200, 404)

○ allowed parameter names (for writes)

edgexfoundry.org | @edgexfoundry

Value Descriptors

● Value descriptors are Core Data objects which are created from a

device profile's devices resources

● They define attributes of device resources (names & types)

● Value descriptor types are the same as Device Resource types

○ ex. int8, float32, binary, ...

● ...and are also used to describe parameters for SET commands

edgexfoundry.org | @edgexfoundry

Example Profile - Simple-Device

name: "Simple-Device"

manufacturer: "Simple Corp."

model: "SP-01"

description: "Example of Simple Device"

.

.

.

edgexfoundry.org | @edgexfoundry

Example Profile - Simple-Device (continued)

 deviceResources:

 name: "SwitchButton"

 description: "Switch On/Off."

 properties:

 value:

 { type: "bool", readWrite: "RW" }

 units:

 { type: "String", readWrite: "R", defaultValue: "On/Off" }

 name: "Image"

 description: "Visual representation of Switch state."

 properties:

 value:

 { type: "binary", readWrite: "R" }

 units:

 { type: "string", readWrite: "R", defaultValue: "On/Off" }

edgexfoundry.org | @edgexfoundry

Example Profile - Simple-Device (continued)

 deviceCommands:

 -

 name: "Switch"

 get:

 - { operation: "get", object: "SwitchButton", property: "value", parameter: "Switch" }

 set:

 - { operation: "set", object: "SwitchButton", property: "value", parameter: "Switch" }

 -

 name: "Image"

 get:

 - { operation: "get", object: "Image", property: "value", parameter: "Image" }

edgexfoundry.org | @edgexfoundry

Example Profile - Simple-Device (continued)

 coreCommands:

 -

 name: "Switch"

 get:

 - { operation: "get", object: "SwitchButton", property: "value", parameter: "Switch" }

 set:

 - { operation: "set", object: "SwitchButton", property: "value", parameter: "Switch" }

 -

 name: "Image"

 get:

 - { operation: "get", object: "Image", property: "value", parameter: "Image" }

edgexfoundry.org | @edgexfoundry

Creating Devices

● New devices can be created:
○ from local configuration file (configuration.toml)
○ from registry (aka consul) configuration
○ directly in Core Metadata via REST endpoint
○ via an SDK function call (AddDevice)

● Devices contain a map called Protocols which itself is a map of
protocol specific properties. Ex.

Protocols [serial: [baud:9600, bits:7, port: com1, …]]

edgexfoundry.org | @edgexfoundry

AutoEvents

● Each device has a list of zero or more AutoEvents
● An AutoEvent is an object used to schedule a device service to

push a Reading to Core Data on a scheduled basis
● AutoEvents are defined by:

○ a frequency (ex. 1s, 2m, 3h, …)
○ a DeviceCommand
○ OnChange flag

edgexfoundry.org | @edgexfoundry

A New Go-based Device Service - Preparation

● The following are prerequisites for developing a new Go-based
device service:
○ go 1.11
○ go-mod-core-contracts
○ device-sdk-go

$ go get github.com/edgexfoundry/go-mod-core-contracts

$ go get github.com/edgexfoundry/device-sdk-go

edgexfoundry.org | @edgexfoundry

Overview of device-sdk-go

● The SDK provides all of the boilerplate code for an EdgeX device
service to manage devices and sensors

● This includes:
○ configuration
○ registry integration
○ integration with core & support services
○ auto-events
○ asynchronous readings
○ REST endpoints
○ device profile imports

edgexfoundry.org | @edgexfoundry

pkg/models - ProtocolDriver

● A Go interface which provides an API to facilitate a device
service's protocol-specific logic.

● This interface defines the following methods:
○ Initialize

○ DisconnectDevice

○ HandleReadCommands

○ HandleWriteCommands

○ Stop

edgexfoundry.org | @edgexfoundry

pkg/models - ProtocolDriver (continued)

● Initialize - key entrypoint for device services to perform:
○ protocol-specific initialization
○ start threads to handle device management

● Stop - entrypoint to handle service shutdown
● DisconnectDevice - handle device removal
● HandleRead/WriteCommands

○ called in response to REST calls and AutoEvents

edgexfoundry.org | @edgexfoundry

pkg/models - CommandValue

● CommmandValue is used to pass protocol specific reading from a

ProtocolDriver implementation to the SDK (which then converts

the values to a string value saved in a Reading)

○ ValueType - an enum which indicates what type is being

returned

○ NumericValue - an array of bytes that holds the underlying

bytes (Big Endian) of a numeric value

○ BinaryValue - an array of bytes that represents a binary

reading

edgexfoundry.org | @edgexfoundry

pkg/startup - Bootstrap

● Provides optional startup Bootstrap functionality:

○ command-line processing

○ configuration loading

○ starts main device service listener

edgexfoundry.org | @edgexfoundry

Examples

● device-simple
https://github.com/edgexfoundry/device-sdk-go/tree/master/example

● device-random
https://github.com/edgexfoundry/device-random

● device-mqtt
https://github.com/edgexfoundry/device-mqtt

edgexfoundry.org | @edgexfoundry

Q&A

