
edgexfoundry.org | @edgexfoundry

An Introduction

Michael Hall

edgexfoundry.org | @edgexfoundry

Edge Computing

Why do I need it?

edgexfoundry.org | @edgexfoundry

Who is EdgeX Foundry?

And how to join us

Vendor-neutral open source project hosted by The Linux Foundation building a
common open framework for IoT edge computing.

Interoperability framework and reference platform to enable an ecosystem of
plug-and-play components that unifies the marketplace and accelerates the
deployment of IoT solutions.

Architected to be agnostic to protocol, silicon (e.g., x86, ARM), OS (e.g., Linux,
Windows, Mac OS), and application environment (e.g., Java, JavaScript, Python,
Go Lang, C/C++) to support customer preferences for differentiation

Part of the LF Edge project at the Linux Foundation

LF Edge Premium Members

LF Edge General Members

● GitHub:
○ https://github.com/edgexfoundry

● Documentation
○ https://docs.edgexfoundry.org

● Slack
○ https://slack.edgexfoundry.org

● Mailing Lists
○ https://lists.edgexfoundry.org

○ https://lists.edgexfoundry.org/calendar

● Open Source and contributor

driven, anybody can participate

● TSC and WG meetings open to

public

● Technical leadership (TSC & WG

chairs) elected by technical

contributors

Getting Involved

https://github.com/edgexfoundry
https://docs.edgexfoundry.org
https://chat.edgexfoundry.org
https://lists.edgexfoundry.org
https://lists.edgexfoundry.org/calendar

edgexfoundry.org | @edgexfoundry

What is EdgeX?

Microservices and Deployments

edgexfoundry.org | @edgexfoundry

Walkthrough

Let’s see it in action

Deploying with Docker
● Install docker & docker-compose

● Fetch docker-compose.yml from developer-scripts repo
○ https://github.com/edgexfoundry/developer-scripts/tree/master/compose-files

● Run `docker-compose up -d`

https://docs.docker.com/install/
https://docs.docker.com/compose/install/
https://github.com/edgexfoundry/developer-scripts/tree/master/compose-files

Defining data - Addressable: Camera Control
POST to http://localhost:48081/api/v1/addressable

{
"name":"camera control",
"protocol":"HTTP",
"address":"172.17.0.1",
"port":49977,
"path":"/cameracontrol",
"publisher":"none",
"user":"none",
"password":"none",
"topic":"none"

}

http://localhost:48081/api/v1/addressable

Defining data - Addressable: Camera 1
POST to http://localhost:48081/api/v1/addressable

{
"name":"camera1 address",
"protocol":"HTTP",
"address":"172.17.0.1",
"port":49999,
"path":"/camera1",
"publisher":"none",
"user":"none",
"password":"none",
"topic":"none"

}

http://localhost:48081/api/v1/addressable

Defining data - Value Descriptors: Human Count
POST to http://localhost:48080/api/v1/valuedescriptor

{
"name":"humancount",
"description":"people count",
"min":"0",
"max":"100",
"type":"I",
"uomLabel":"count",
"defaultValue":"0",
"formatting":"%s",
"labels":["count","humans"]

}

http://localhost:48080/api/v1/valuedescriptor

Defining data - Value Descriptors: Human Count
POST to http://localhost:48080/api/v1/valuedescriptor

{
"name":"caninecount",
"description":"dog count",
"min":"0",
"max":"100",
"type":"I",
"uomLabel":"count",
"defaultValue":"0",
"formatting":"%s",
"labels":["count","canines"]

}

http://localhost:48080/api/v1/valuedescriptor

Defining data - Value Descriptors: Scan Distance
POST to http://localhost:48080/api/v1/valuedescriptor

{
"name":"depth",
"description":"scan distance",
"min":"1",
"max":"10",
"type":"I",
"uomLabel":"feet",
"defaultValue":"1",
"formatting":"%s",
"labels":["scan","distance"]

}

http://localhost:48080/api/v1/valuedescriptor

Defining data - Value Descriptors: Duration
POST to http://localhost:48080/api/v1/valuedescriptor

{
"name":"duration",
"description":"time between events",
"min":"10",
"max":"180",
"type":"I",
"uomLabel":"seconds",
"defaultValue":"10",
"formatting":"%s",
"labels":["duration","time"]

}

http://localhost:48080/api/v1/valuedescriptor

Defining data - Value Descriptors: Camera Error
POST to http://localhost:48080/api/v1/valuedescriptor

{
"name":"cameraerror",
"description":"error response message from a camera",
"min":"",
"max":"",
"type":"S",
"uomLabel":"",
"defaultValue":"error",
"formatting":"%s",
"labels":["error","message"]

}

http://localhost:48080/api/v1/valuedescriptor

Defining your device - Device Profile
name: "camera monitor profile"
manufacturer: "Dell"
model: "Cam12345"
labels:
 - "camera"
description: "Human and canine camera monitor profile"
commands:
 -
 (Next Slide)

Defining your device - Device Profile - Commands
commands:
 -
 name: People
 get:
 path: "/api/v1/devices/{deviceId}/peoplecount"
 responses:
 -
 code: "200"
 description: "Number of people on camera"
 expectedValues: ["humancount"]
 -
 code: "503"
 description: "service unavailable"
 expectedValues: ["cameraerror"]

Defining your device - Device Profile - Commands
 name: ScanDepth
 get:
 ...
 put:
 path: "/api/v1/devices/{deviceId}/scandepth"
 parameterNames: ["depth"]
 responses:
 -
 code: "204"
 description: "Set the scan depth."
 expectedValues: []
 -
 code: "503"
 description: "service unavailable"
 expectedValues: ["cameraerror"]

Defining your device - Device Profile
POST to http://localhost:48081/api/v1/deviceprofile/uploadfile

FORM-DATA:
key: “file”
value: EdgeX_CameraMonitorProfile.yml

curl -F “file=@EdgeX_CameraMonitorProfile.yml” http://localhost:48081/api/v1/deviceprofile/uploadfile

http://localhost:48081/api/v1/deviceprofile/uploadfile

Defining a device service
POST to http://localhost:48081/api/v1/deviceservice

{
"name":"camera control device service",
"description":"Manage human and dog counting cameras",
"labels":["camera","counter"],
"adminState":"unlocked",
"operatingState":"enabled",
"addressable": {

"name":"camera control"
}

}

http://localhost:48081/api/v1/deviceservice

Deploying a device
POST to http://localhost:48081/api/v1/device

{
"name":"countcamera1",
"description":"human and dog counting camera #1",
"adminState":"unlocked",
"operatingState":"enabled",
"addressable":{"name":"camera1 address"},
"labels":["camera","counter"],
"location":"",
"service":{"name":"camera control device service"},
"profile":{"name":"camera monitor profile"}

}

http://localhost:48081/api/v1/device

Deploying a device

Device
countcamera1

Device Profile
camera monitor profile

Addressable
camera1 address

Addressable
camera control

Device Service
camera control
device service

Calling device commands
GET to http://localhost:48082/api/v1/device/name/countcamera1

http://localhost:48082/api/v1/device/name/countcamera1

Calling device commands
PUT to http://localhost:48082/api/v1/device/<device id>/command/<command id>

{
"depth":"9"

}

Sending events
POST to http://localhost:48080/api/v1/event

{
"device":"countcamera1",
"readings":[

{"name":"humancount","value":"5"},
{"name":"caninecount","value":"3"}

]
}

http://localhost:48080/api/v1/event

Reading events
GET to http://localhost:48080/api/v1/event/device/countcamera1/10

GET to http://localhost:48080/api/v1/reading/name/humancount/10

http://localhost:48080/api/v1/event/device/countcamera1/10
http://localhost:48080/api/v1/reading/name/humancount/10

Exporting data
POST to http://localhost:48071/api/v1/registration
{

"name":"MyMQTTTopic",
"addressable":{

"name":"MyMQTTBroker",
"protocol":"TCP",
"address":"tcp://m10.cloudmqtt.com",
"port":15421,
"publisher":"EdgeXExportPublisher",
"topic":"EdgeXDataTopic"

},
"format":"JSON",
"enable":true,
"destination":"MQTT_TOPIC"

}

http://localhost:48071/api/v1/registration

edgexfoundry.org | @edgexfoundry

Developing & Contributing

Install Go
Get GoLang 1.11.x:

wget https://dl.google.com/go/go1.11.8.linux-amd64.tar.gz

sudo tar -C /usr/local -xvf go1.11.8.linux-amd64.tar.gz

Setup your environment
cat >> ~/.bashrc << ‘EOF’
export GOPATH=$HOME/go
export PATH=/usr/local/go/bin:$PATH:$GOPATH/bin
EOF

source ~/.bashrc

https://dl.google.com/go/go1.11.8.linux-amd64.tar.gz

Install MongoDB
● sudo apt install mongodb-server
● systemctl status mongodb
● wget

https://github.com/edgexfoundry/docker-edgex-mongo/raw/master/init_mongo.js
● sudo -u mongodb mongo < init_mongo.js

https://github.com/edgexfoundry/docker-edgex-mongo/raw/master/init_mongo.js

Get the EdgeX source code
● go get github.com/edgexfoundry/edgex-go

● cd ~/go/src/github.com/edgexfoundry/edgex-go

● sudo apt install libczmq-dev

● make build

● make run

● cd ./docs

● ./build.sh

Setup your git repository
● Fork https://github.com/edgexfoundry/edgex-go

● git remote add mygithub https://github.com/<your_username>/edgex-go.git

● git config --global.user.name “John Doe”

● git config --global.user.email johndoe@example.com

https://github.com/edgexfoundry/edgex-go
https://github.com/edgexfoundry/edgex-go.git

Contributing changes
● git checkout -b your_fix_branch_name

● git add <files you changed>

● git commit --signoff -m “Your commit message”

● git push mygithub your_fix_branch_name

PR review and approval
● Pass DCO Signoff

● Pass automated tests

● Have at least one approving

review

