
EdgeX F2F
Redis Technical Session
November 2019 | André Srinivasan

● Redis Labs and Redis

● API

● Transactions

● Persistence

● TL;DR

Agenda

2

Redis Labs and Redis

Redis Labs is the Home of Redis

4

An In-memory open source database, supporting a variety
high performance operational, analytics or hybrid use case

Our Roots Are in Open Source

How Redis Labs Thinks About Redis

5

Simplicity Extensibility Performance
Database for the Instant Experience
(Low latency at High Throughput)

1

Redis Data Structures

2 3

Redis Modules

Lists

Hashes

Bitmaps

Strings

Bit field

Streams

Hyperloglog

Sorted Sets

Sets

Geospatial Indexes

Redis in Context

6

Redis Database

7

● Redis is a key-value store; sometimes referred to as data-structure store

● Schema-less

● Keys must be unique (like primary keys in relational databases)

● The Redis language is basically CRUD

● Design Patterns

○ Common naming convention uses delimiters

db.DeviceService + ":name"

○ Cryptic keys are hard to read

○ Wordy keys take up memory

Properties of Keys and Values

8

All Keys

● Up to 512MB in size, cAse SeNsitivE, and binary safe strings

● Can register to listen for changes

● Deleting the key deletes the value
○ DEL - blocking

○ UNLINK - non blocking

All Data Structures

● Can have expiry (TTL – Time-To-Live)

● Can be up to 512MB in size

API

● redis-cli is the Redis command line interface
○ sends commands to Redis
○ reads the replies sent by the server directly from the terminal

● It has two main modes
○ Interactive mode where there is a REPL (Read Eval Print Loop) where the user

types commands and get replies
○ Command line mode – The command is sent as arguments of redis-cli, executed,

and printed on the standard output

Redis CLI

10

Data Structure Use Patterns

11

Key

"I'm a Plain Text String!"

{ A: “foo”, B: “bar”, C: “baz” }

{ A , B , C , D , E }

[A → B → C → D → E]

{ A: 0.1, B: 0.3, C: 100, D: 1337 }

{ A: (51.5, 0.12), B: (32.1, 34.7) }

00110101 11001110 10101010

00110101011001110010101010

{23334}{112345569}{766538}{665455}

Strings

Bitmaps

Bit field

Hashes

Lists

Sets

Sorted Sets

Geospatial
Indexes

Hyperloglogs

Cache / Blob

Bitmap Encoding

Sessions / Profiles

Queues

Tags / Labels /
Recommendations

Queues w/ Prioritization

Location Services

Statistical Estimations

Efficient Integers

{ id1=time1.seq(A:”xyz”, B:”abc”), id2=time2.seq(D:”123”) } Streams Event Stream Processing

String Data Structure

12

● Foundational data type

● Binary safe

● Can store:

○ Strings, Byte Arrays

○ Numeric - Integers, Floats

○ Serialized Objects - JSON, CBOR, Images, HTML, Files, ...

● Simple GET and SET operations

Basics
● GET / SET
● GETSET
● MGET/MSET
● SETNX

String Data Structure

13

SET w/ Expire
● SETEX (sec)
● PSETEX (ms)

String Data Structure

14

Utility Commands
● APPEND
● STRLEN
● SETRANGE
● GETRANGE

String Data Structure

15

Numeric Commands
● INCR
● INCRBY
● DECR
● DECRBY
● INCRBYFLOAT

String Data Structure

16

● Support ById query where returned value is EdgeX data structure
○ Key is UUID
○ Serialized EdgeX data structures are stored as Redis Strings

Create

m, err := marshalEvent(e)
_ = conn.Send("SET", e.ID, m)

Read

obj, err := redis.Bytes(conn.Do("GET", id))
event, err = unmarshalEvent(obj)

Why We Care

17

● Dictionary or Map of key-value pairs (attributes)

● Flat data model – No explicit hierarchy and/or nesting

● Each attribute’s value is a String data structure

● Advantages of Hashes instead of Strings

○ Well suited to represent Objects (Classes)

○ Uses very little space when ~100 fields or fewer are used

○ High throughput for partial reads/exists/scan/writes

Hash Data Structure

18

Hash Data Structure

key Name Role

1 Allen Solutions
Architect

2 John Account
manager

3 Dan Solutions
Architect

Table - Session

session:1 name allen role “Solutions Architect”

Table Name
+

Primary Key

Attribute 1 Attribute 2

19

Basics
● HSET/HMSET
● HGET
● HGETALL
● HVALS
● HMGET
● HMSET

Hash Data Structure

20

Utility Commands
● HEXISTS
● HKEYS
● HSCAN
● HLEN
● HDEL

Hash Data Structure

21

● Support ByName or other field specific queries (think dictionary lookup)
○ Result is UUID so can get to serialized data structure

Create

_ = conn.Send("HSET", db.DeviceService+":name", ds.Name, id)

Read

id, err := redis.String(conn.Do("HGET", hash, field))
object, err := redis.Bytes(conn.Do("GET", id))
return unmarshal(object, out)

Why We Care

22

List Data Structure

23

● Implemented as doubly linked list
●High Read / Write Performance for Head / Tail modifications
●Consumers can perform blocking operations

List Data Structure

2LPUSH 2

2 1RPUSH 1

3 2 1LPUSH 3

3 2RPOP / BRPOP

Basics

LRANGE
24

● We don't at the moment
○ Just wanted to show the data structure exists

Why We Care

25

Set Data Structure

26

●Follows the principles of basic discrete mathematics

●Distinct values only

●Unordered collection (order of elements is not guaranteed)

●High performance operations

●Perfect for operations on one or more collections

○ Intersection, Union, Difference

Set Data Structure

NY Sports Teams

Texas Sports Teams

Yankees

Giants

Cowboys

Stars

Rangers

27

Utility Commands
• SISMEMBER
• SCARD
• SSCAN
• SRANDMEMBER
• SREM
• SPOP

Set Data Structure

28

● Support ByNameAndDeviceId. Think multiple tags/labels.

Create

_ = conn.Send("SADD", db.Command+":name:"+cmd.Name, cid)

_ = conn.Send("SADD", db.Command+":device:"+id, cid)

Read

ids, err := redis.Values(conn.Do("SINTER", args...))

objects, err = redis.ByteSlices(conn.Do("MGET", ids...))

Why We Care

29

● Support ByCategoriesLabels.

Create

_ = conn.Send("SADD", db.Subscription+":label:"+label,
id)

Read

ids, err := redis.Values(conn.Do("SUNION", args...))

objects, err = redis.ByteSlices(conn.Do("MGET", ids...))

Why We Care

30

Sorted Set Data Structure

31

●Stores members like Sets however guarantees order

●Sorting is based on an inserted score/weight/time-interval

●Does not include DIFF / UNION commands

●Used for
○ Ordered list such such as time series

○ Leaderboards

○ Priority/Weighted Queues

○ Publish-Subscribe

○ Activity Tracking

Basics
● ZADD
● ZRANGE
● ZRANGEBYSCORE
● ZREVRANGE
● ZREVRANGEBYSCORE

Sorted Set Data Structure

32

Utility Commands
● ZCARD
● ZCOUNT
● ZSCORE
● ZRANK
● ZSCAN

Sorted Set Data Structure

33

Basics++
• ZINCRBY
• ZREM
• ZPOPMAX
• ZPOPMIN

Sorted Set Data Structure

34

● Support ByCreationTime or ByDevice range queries

Create

_ = conn.Send("SET", r.Id, m)
_ = conn.Send("ZADD", db.ReadingsCollection, 0, r.Id)
_ = conn.Send("ZADD", db.ReadingsCollection+":created", r.Created,

r.Id)
_ = conn.Send("ZADD", db.ReadingsCollection+":device:"+r.Device,

r.Created, r.Id)
_ = conn.Send("ZADD", db.ReadingsCollection+":name:"+r.Name,

r.Created, r.Id)

Why You Care

35

● Support ByCreationTime or ByDevice range queries

Read

ids, err := redis.Values(conn.Do("ZRANGE", key, 0, -1))

ids, err := redis.Values(conn.Do("ZREVRANGE", key, 0, -1))

Why You Care

36

Transactions

A - Atomicity
 -- Transaction executes as an indivisible unit
C - Consistency
 -- Transaction takes database from one valid state to another
I – Isolation
 -- Transactions result in a state as if they were executed sequentially
D – Durability
 -- Transaction changes are available event in the event of failure

ACID Transactions

38

Single Client – Execution Flow

39

Two Client – Execution Flow

40

Multiple Command Transactions

41

● MULTI to start transaction block

● EXEC to close transaction block

● Commands are queued until exec

● All commands or no commands are applied

● Transactions can have errors

127.0.0.1:6379> MULTI

OK

127.0.0.1:6379> sadd site:visitors 124

QUEUED

127.0.0.1:6379> incr site:raw-count

QUEUED

127.0.0.1:6379> hset sessions:124 userid salvatore ip 127.0.0.1

QUEUED

127.0.0.1:6379> EXEC

1) (integer) 1

2) (integer) 1

3) (integer) 2

MULTI Example

42

127.0.0.1:6379> sadd site:visitors 124

QUEUED

127.0.0.1:6379> incr site:raw-count

QUEUED

127.0.0.1:6379> DISCARD

OK

DISCARD Example

43

127.0.0.1:6379> MULTI

OK

127.0.0.1:6379> set site:visitors 10

QUEUED

127.0.0.1:6379> ste site:raw-count 20

(error) ERR unknown command 'ste'

127.0.0.1:6379> EXEC

(error) EXECABORT Transaction discarded because of previous errors.

Transactions with Errors – Syntactic Error

44

127.0.0.1:6379> MULTI

OK

127.0.0.1:6379> set messages:hello "Hello World!"

QUEUED

127.0.0.1:6379> incr messages:hello

QUEUED

127.0.0.1:6379> EXEC

1) OK

2) (error) ERR value is not an integer or out of range

Transactions with Errors – Semantic Error

45

Persistence

Disk Based Persistence - Options

47

● Redis continues to serve commands from main memory

● Multiple Persistence modes
○ Snapshot (RDB): store a compact point-in-time copy every minute, hourly, or daily – tunable

○ Append-only-file (AOF): write to disk (fsync) every second or every write - tunable

● Provides durability of data across power loss
○ Look into replication to prevent data loss in case of node loss

RDB Persistence

48

● Persistence
○ Fork Redis process

○ Child process writes new RDB file

○ Atomic replace old RDB file with new

● Trigger manually
○ SAVE command (sync)

○ BGSAVE (background)

AOF Persistence

49

● Configuration
○ APPENDONLY directive (Redis.conf): APPENDONLY YES

○ Runtime : CONFIG SET APPENDONLY YES

● AOF File fsync options
○ Trade off speed for data security

○ Options: None, every second, always

● BGREWRITEAOF
○ AOF file grows indefinitely

○ BGREWRITEAOF – trigger compaction of AOF file

Transactions and Persistence Summary

50

● No Rollback – transaction commands are queued then sent to server

● Transactions
○ Atomic – through MULTI/EXEC

○ Isolation, Consistency – single threaded nature

○ Durability – persistence modes: snapshots and append-only-file

● Transactions work differently than other databases, achieves the same goals

● Single threaded event-loop for serving commands

TL;DR

● All microservices that use persistence have a Redis implementation
○ redigo client library
○ Lua for to optimize server centric operations

● Based on how data queried, data structures used do date
○ String
○ Hash
○ Set
○ Sorted Set

● No plans to support Logger

● Need integrate with security config for username/password auth

Current EdgeX/Redis Status

52

● Redis Streams implementation of message bus

● Storage optimization

● Expose Redis configuration to EdgeX configuration

Thinking About

53

● monitor command

● redis-cli

● RedisInsight - https://redislabs.com/redisinsight/

Tools

54

https://redislabs.com/redisinsight/

● redis.io

● Stack Overflow

● Redis In Action - https://redislabs.com/ebook/foreword/

● Redis University - https://university.redislabs.com/

● andre@redislabs.com

More Info

55

https://redislabs.com/ebook/foreword/
https://university.redislabs.com/

Thanks

André Srinivasan
andre@redislabs.com

Backup

Streams Data Structure

• Redis Steams is purpose-built to implement Message Streaming and Event-Processing patterns

• Streams is an append-only log-like data structure which naturally guarantees ordering by time

• Broadcasts in parallel to consumers for max throughput at sub-millisecond latency

• Naturally provides at-least once delivery or can implement exactly-once delivery guarantees

• Naturally allows for replay and querying of historical messages

• Scales consumer-side processing by allowing consumer groups to partition individual stream(s)

Learn more at: https://redis.io/topics/streams-intro 58

https://redis.io/topics/streams-intro

• Option to consumers to read streaming data and data at rest

• Consumer groups to help the consumers to coordinate among
themselves while reading the data from the same stream

• Super-fast lookup queries powered by radix trees

• Automatic eviction of data based on the upper limit

Streams Data Structure

59

Ingest
Stream

Message
Broker

or
Stream

Processor

Output
Stream

Analytic
s

Collect large
volume of data
arriving in high
velocity

Store the data
temporarily

Transform
incoming data
into one or
more formats
as required by
the consumers

Push the data to
the consumers

Allow backward
looking queries
to pull data

Store the data and
perform analytical
operations such as
predictive analytics,
ML training, ML
classification and
categorization,
recommendations,
pattern matching,
etc.

Io
T

Activity
logs

Message
s

Streams Data Structure

60

Streams Data Structure

1. It enables asynchronous data exchange between producers
and consumers

 Messaging Producer

Consum
er

61

Streams Data Structure

 Analytics

 Data Backup

Consumers

Producer

 Messaging

2. You can consume data in real-time as it arrives or lookup
historical data

62

Streams Data Structure

Producer

 Image Processor

Arrival Rate:
500/sec

Consumption Rate:
500/sec

 Image Processor

 Image Processor

 Image Processor

 Image Processor

Redis Stream

3. With consumer groups, you can scale out and avoid backlogs

63

Streams Data Structure

 Classifier 1

 Classifier 2

 Classifier n

Consumer Group

XREADGROUP

XREAD

Consumers

Producer 2

Producer m

Producer 1

Producer 3

XADD

XACK

Deep
Learning-based
Classification

 Analytics

 Data Backup

 Search

Simplify data collection, processing and distribution to support
complex scenarios

64

Streams Data Structure

Benefits

• High Velocity Collection (the only bottleneck is your network I/O)

• Many to Many Mapping – Producer to Consumer

• Effectively manage your consumption of data even when producers and consumers
don’t operate at the same rate

• Persist data when your consumers are offline or disconnected

• Communicate between producers and consumers asynchronously (Rate limitation
problems)

• Scale your number of consumers based on data consumption

• Implement transaction-like data safety when consumers fail consuming data (XACK)

• Self Contained Architecture

65

Streams Data Structure

Asynchronous producer-consumer message transfer

 Messaging Producer

Consum
erXAD

D
XREA
D

XADD mystream * name Anna
XADD mystream * name Bert
XADD mystream * name Cathy

XREAD COUNT 100 STREAMS mystream 0

XREAD BLOCK 10000 STREAMS mystream $

66

Streams Data Structure

Lookup historical data

 Analytics

 Data Backup

Consumers

Producer

 Messaging

XADD

XREAD
XRANGE
XREVRANGE

XRANGE mystream 1518951123450-0 1518951123460-0 COUNT 10

XRANGE mystream - + COUNT 10

67

Streams Data Structure

Producer

 Image Processor

Arrival Rate:
500/sec

Consumption Rate:
500/sec

 Image Processor

 Image Processor

 Image Processor

Redis Stream

Consumer Group

Consumer
1

Consumer
2

Consumer
3

Consumer
n

Unconsumed
List

Consumer
s

XADD XGROUP

68

Streams Data Structure

Create a consumer group

Unconsumed
List

mygroup

Alic
e

Bo
b

edcba

mystream

edcba
App A

App B

XGROUP CREATE

XGROUP CREATE mystream mygroup $

69

Streams Data Structure

Read the data

Unconsumed
List

mygroup

Alic
e

Bo
b

App A

App B

a
ed

cb

XREADGROUP

XREADGROUP GROUP mygroup COUNT 2 Alice STREAMS mystream >

XREADGROUP GROUP mygroup COUNT 2 Bob STREAMS mystream >

70

Streams Data Structure

Consumers acknowledge that they consumed the data

Unconsumed
List

mygrou
p Alic

e

Bo
b

App A

App B

a
cb

XAC
K

XACK mystream mygroup 1526569411111-0 1526569411112-0

71

Streams Data Structure

Repeat the cycle

Unconsumed
List

mygroup

Alic
e

Bo
b

App A

App B

a

cb

XREADGROUP

XREADGROUP GROUP mygroup COUNT 2 Alice STREAMS mystream >

72

Streams Data Structure

How to claim the data from a consumer that failed while
processing the data?

Unconsumed
List

mygroup

Alic
e

Bo
b

App A

App B
cb

Unconsumed
List

mygroup

Alic
e

Bo
b

App A

App B

cb

XCLAIM

73

Streams Data Structure

Claim pending data from other consumers

Unconsumed
List

mygrou
p Alic

e

Bo
b

App A

App B

cb

XPENDING mystream mygroup - + 10 Bob

XCLAIM mystream mygroup Alice 0 1526569411113-0 1526569411114-0

74

(Hands-on Exercise) Streams Data Structure

Consumer

Consumer

Producer

75

