
edgexfoundry.org | @edgexfoundry

EdgeX App Functions SDK
EdgeX App Service Configurable

Mike Johanson and Lenny Goodell

Welcome!
Today we will be covering the App Functions SDK and
the App Service Configurable.

1

edgexfoundry.org | @edgexfoundry

Agenda

• App Functions SDK (overview)

• App Service Configurable

• Labs (App Service Configurable)

• App Functions SDK (detailed)

• Labs (custom application services)

We’ll start with a high level overview of the App
Functions SDK,
then cover the App Service Configurable,
Followed by a couple labs using the App Service
Configurable

The we’ll return a detailed look at the App
Functions SDK
And wrap up with some labs using the SDK to create
custom Application Services

2

edgexfoundry.org | @edgexfoundry

What is the App Functions SDK?

Message
Bus

HTTP

Built-in functionsBuilt-in functions

App Functions SDKApp Functions SDK
TriggersTriggers

Filters
• By Device Name
• By Value Descriptor

Conversions
• To JSON
• To XML

Exports
• To MQTT
• To HTTP(S)

(no auth)

Compression
• GZIP
• ZLIP

Encryption
• AES

Core Data
• Mark as Pushed
• Push to Core

Output
• SetOutput

EdgeX IntegrationEdgeX Integration

LoggingConfiguration TelemetryMessaging Env Variables

NotificationsCommanding Core DataValue Desc Security

Message
Bus

Message
Bus

HTTPHTTP

Built-in functions

App Functions SDK
Triggers

Filters
• By Device Name
• By Value Descriptor

Filters
• By Device Name
• By Value Descriptor

Conversions
• To JSON
• To XML

Conversions
• To JSON
• To XML

Exports
• To MQTT
• To HTTP(S)

(no auth)

Exports
• To MQTT
• To HTTP(S)

(no auth)

Compression
• GZIP
• ZLIP

Compression
• GZIP
• ZLIP

Encryption
• AES

Encryption
• AES

Core Data
• Mark as Pushed
• Push to Core

Core Data
• Mark as Pushed
• Push to Core

Output
• SetOutput

Output
• SetOutput

EdgeX Integration

LoggingLoggingConfigurationConfiguration TelemetryTelemetryMessagingMessaging Env VariablesEnv Variables

NotificationsNotificationsCommandingCommanding Core DataCore DataValue DescValue Desc SecuritySecurity

The App Functions SDK provides the capability to
process data via a functions pipeline using built-
in functions for filtering, transforming, exporting,
etc. and/or you own custom functions.

It also includes all the EdgeX integration for you,
so you don’t have to worry about loading
configuration, setting up logging, etc.

3

edgexfoundry.org | @edgexfoundry

Functions Pipeline

• The SDK is built around the idea of a “Functions Pipeline".

• The pipeline is a collection of various functions that process the data in the
order that you've specified.

• The pipeline is executed when the configured trigger receives data.

• The first function in the pipeline is called with the data that triggered the
pipeline. This is either an Edgex Event or the specified TargetType.

• Each successive function in the pipeline is called with the return result of
the previous function.

So what is a functions pipeline?

We currently have Message Bus or HTTP triggers.

TargetType is specified when initializing the SDK. By
default it is an EdgeX Event, but It can be a custom
type defined by your application or simply a byte slice
for raw data.

Target Type is useful when the data received by the
trigger isn’t coming from Core Data.

4

edgexfoundry.org | @edgexfoundry

Examples of Functions Pipeline

Events flow into the SDK via triggers. One or more functions (built in or custom) operate on the
data via the Functions Pipeline. The data can then be exported, returned as a response to the
trigger or both.

Trigger
(bus/http)

Trigger
(bus/http)

Functions Pipeline

Function #1
(filter by device name)

Function #1
(filter by device name)

Function #2
(XML Transform)

Function #2
(XML Transform)

Function #3
(HTTP export)

Function #3
(HTTP export)

HTTP(S)

Post

HTTP POST /
Bus Subscribe

Trigger
(bus/http)

Trigger
(bus/http)

Functions Pipeline

Function #1
(filter by value

descriptor)

Function #1
(filter by value

descriptor)

Function #2
(custom converter)

Function #2
(custom converter)

Trigger
Response

Trigger
Response HTTP response

/ Bus Publish

HTTP POST /
Bus Subscribe

Set Output

Here is a couple examples of a functions pipeline.

One has the final result retuned as the “trigger
response” and the other’s final result is exported to
HTTP endpoint.

5

edgexfoundry.org | @edgexfoundry

What is App Service Configurable?

• Allows deploying Application Services without coding

• Multiple instances can be deployed, each with a different profile.

• Function Pipeline Configuration is “Writeable” allowing live updates from Registry

• Function Pipeline Configuration is limited to the built in functions

• Allows deploying Application Services without coding

• Multiple instances can be deployed, each with a different profile.

• Function Pipeline Configuration is “Writeable” allowing live updates from Registry

• Function Pipeline Configuration is limited to the built in functions

App Service Configurable

App Functions SDK

App Service Configurable is an Application
Service built on the App Functions SDK which
allows defining the functions pipeline via
configuration.

6

edgexfoundry.org | @edgexfoundry

Profiles
Profiles define the uniqueness of each instance

• http-export

• mqtt-export

• push-to-core

• rules-engine

• default (no-profile)

Profile name is used in Registry service key.
• i.e. AppService-mqtt-export

The following profiles are provided in the Docker container

http-export
Configures pipeline to filter, json transform and export data received from Message Bus via
HTTP.
FilterByDeviceName, HTTPPostJSON functions configuration parameters require
modification. Includes calling MarkAsPushed function after successful export

mqtt-export
Configures pipeline to json transform and export data received from Message Bus via
MQTT.
MQTTSend function configuration parameters require modification. Includes calling
MarkAsPushed function after successful export

push-to-core
Configures pipeline to push data from HTTP trigger to Core Data.
PushToCore function configuration parameters require modification

rules-engine
Configures pipeline and message bus to forward Event messages to Rules engine via ZMQ

default (no-profile)
Sample pipeline that filters by device, transforms to XML and sets output. Configuration
contains all built-in functions so they can be configured and added to the pipeline

7

edgexfoundry.org | @edgexfoundry

Writeable Pipeline Configuration

[Writable.Pipeline]
UseTargetTypeOfByteArray = false
ExecutionOrder = "FilterByDeviceName, TransformToJSON, HTTPPostJSON, MarkAsPushed"

[Writable.Pipeline.Functions.TransformToJSON]
[Writable.Pipeline.Functions.MarkAsPushed]
[Writable.Pipeline.Functions.FilterByDeviceName]

[Writable.Pipeline.Functions.FilterByDeviceName.Parameters]
DeviceNames = ""

[Writable.Pipeline.Functions.HTTPPostJSON]
[Writable.Pipeline.Functions.HTTPPostJSON.Parameters]
url = "http://somewhere.com/data"
persistOnError = "false"

UseTargetTypeOfByteArray – Boolean
Allows for the input data received to be raw bytes
rather than an EdgeX Event

ExecutionOrder – Comma separated list of built in
function names

These are the functions that will be executed and
the order they will be executed in Names here
must be present in the following ”functions” list

Functions – List of pipeline functions
List of eligible functions and their configuration.
The function names here must match that of a
built in function. Each function can only appear
once in the list

8

edgexfoundry.org | @edgexfoundry

Pipeline Configuration in Consul

Here is what the Functions Pipeline configuration looks like from Consul

9

edgexfoundry.org | @edgexfoundry

Built in Functions

Filtering
• FilterByDeviceName
• FilterByValueDescriptor

Encryption
• EncryptWithAES

Conversion
• TransformToXML
• TransformToJSON

Compression
• CompressWithGZIP
• CompressWithZLIB

CoreData
• MarkAsPushed
• PushToCore

Export
• HTTPPost
• MQTTSend

Output
• SetOutput

Here is a list of the built-in functions that are available
to use via configuration.

10

edgexfoundry.org | @edgexfoundry

Environment Variable Overrides For Docker

edgex_registry: consul://edgex-core-consul:8500
edgex_profile : [target profile]
edgex_service : http://[service name]:[port]
Service_Host : [service name]
Clients_CoreData_Host: edgex-core-data
Clients_Logging_Host : edgex-support-logging
Logging_EnableRemote: "true"
Database_Host : edgex-mongo
Database_Username : appservice
Database_Password : password

App Service Configurable no longer has docker specific
profiles.

It now relies on environment variable overrides in the
docker compose file for the docker specific differences

11

edgexfoundry.org | @edgexfoundry

Labs 1 & 2
20 mins

https://github.com/rsdmike/labs

12

edgexfoundry.org | @edgexfoundry

Why use the SDK?

• Addresses scalability concerns
with export services

• Empower developers with the
flexibility needed to process data
as needed.

• Built w/ extensibility in mind for
new functions to be added

• Addresses scalability concerns
with export services

• Empower developers with the
flexibility needed to process data
as needed.

• Built w/ extensibility in mind for
new functions to be added

Message
Bus

HTTP

Built-in functionsBuilt-in functions

App Functions SDKApp Functions SDK
TriggersTriggers

Filters
• By Device Name
• By Value Descriptor

Conversions
• To JSON
• To XML

Exports
• To MQTT
• To HTTP(S)

(no auth)

Compression
• GZIP
• ZLIP

Encryption
• AES

Core Data
• Mark as Pushed
• Push to Core

Output
• SetOutput

EdgeX IntegrationEdgeX Integration

LoggingConfiguration TelemetryMessaging Env Variables

NotificationsCommanding Core DataValue Desc Security

Message
Bus

Message
Bus

HTTPHTTP

Built-in functions

App Functions SDK
Triggers

Filters
• By Device Name
• By Value Descriptor

Filters
• By Device Name
• By Value Descriptor

Conversions
• To JSON
• To XML

Conversions
• To JSON
• To XML

Exports
• To MQTT
• To HTTP(S)

(no auth)

Exports
• To MQTT
• To HTTP(S)

(no auth)

Compression
• GZIP
• ZLIP

Compression
• GZIP
• ZLIP

Encryption
• AES

Encryption
• AES

Core Data
• Mark as Pushed
• Push to Core

Core Data
• Mark as Pushed
• Push to Core

Output
• SetOutput

Output
• SetOutput

EdgeX Integration

LoggingLoggingConfigurationConfiguration TelemetryTelemetryMessagingMessaging Env VariablesEnv Variables

NotificationsNotificationsCommandingCommanding Core DataCore DataValue DescValue Desc SecuritySecurity

The current export-distro doesn’t scale since all data
flows through this one service for all export
registrations, becoming a bottle neck.

Application Services built upon the App Functions SDK
are meant to replace export-client/export-distro after
the Geneva release.

These services will scale much better as they will be
single purpose and run in parallel, unlike export-distro
where endpoints are called sequentially.

13

edgexfoundry.org | @edgexfoundry

Example Data Flow

The App Functions SDK enables rapid development of
Golang Application Services for EdgeX.

Data flows from a device service, through core data,
up to App Functions SDK, to be processed, interpreted,
or sent off box.

The SDK provides all the integration with EdgeX,
allowing developers to focus on the custom logic of
their application service.

14

edgexfoundry.org | @edgexfoundry

Creating custom Application Service
• First, create an instance of the EdgeX SDK and initialize it.

• Next, set the function pipeline.

• Lastly, run the pipeline

sdk := &appsdk.AppFunctionsSDK{ServiceKey: serviceKey}
sdk.Initialize()

deviceNames := []string{"Random-Float-Device"}
sdk.SetFunctionsPipeline(

transforms.NewFilter(deviceNames).FilterByDeviceName,
transforms.NewConversion().TransformToXML,
printXMLToConsole, // Custom function

)

sdk.MakeItRun()

sdk := &appsdk.AppFunctionsSDK{ServiceKey: serviceKey, TargetType: &MyType{}}
sdk.Initialize()

This can all be done from the service’s main function.This can all be done from the service’s main function.

This is where TargetType can
be specified.
Must be a pointer to an
instance of the type

Creating a custom Application Service is fairly simple.

1)Initialize the SDK, note here is where you specify
your TargetType, if not using EdgeX Event.

2)Set you functions pipeline with built-in and custom
functions

3)Run the pipeline.

15

edgexfoundry.org | @edgexfoundry

Writing a custom Pipeline Function

edgexcontext
• Provides API for functions to access EdgeX Clients, configuration and convenience methods

params[0]
• EdgeX Event

• Instance of TargetType

• Data from previous function

params[1]
• Content type If TargetType is set to *[]byte, otherwise it is empty

func(edgexcontext *Context, params ...interface{}) (bool, interface{})

Custom Pipeline functions must to adhere to the
AppFunction function signature seen here.

Each function is passed, a context and a params slice.

16

edgexfoundry.org | @edgexfoundry

Writing a custom Pipeline Function (con’t)
All Pipeline functions should do the following

1. Validate the input data

2. Operate on the input data

3. Return appropriate value/data

• Bool return value can be
• True - pipeline execution should continue

• Further processing required
• False - pipeline execution should stop

• Error has occurred
• No further processing required.

• Interface{} return value can be
• Error object
• Data to be passed to the next function in the pipeline
• Empty (nil) - no further processing required

func (f Conversion) TransformToXML(
edgexcontext *appcontext.Context,
params ...interface{})
(bool, interface{}) {

if len(params) < 1 {
return false, errors.New("no Event received")

}

event, ok := params[0].(models.Event)
if !ok {

return false, errors.New("incorrect type received")
}

result, err := xml.Marshal(event)
if err != nil {

return false, err
}

return true, string(result)
}

17

edgexfoundry.org | @edgexfoundry

App Context

Provides the following APIs for the pipeline functions

Edgex Clients
LoggingClient
EventClient
ValueDescriptorClient
CommandClient
NotificationsClient

Helpers
MarkAsPushed()
PushToCore()
Complete()
SetRetryData()

Data
Configuration
EventID
EventChecksum
CorrelationID

Here is more detail on the App Context APIs

18

edgexfoundry.org | @edgexfoundry

[Binding]
Type="http"

SDK Specific Configuration

[Binding]
Type="messagebus"
SubscribeTopic="events"
PublishTopic="somewhere"

[MessageBus]
Type = 'zero'

[MessageBus.PublishHost]
Host = '*'
Port = 5564
Protocol = 'tcp'

[MessageBus.SubscribeHost]
Host = 'edgex-core-data'
Port = 5563
Protocol = 'tcp'

[Writable.StoreAndForward]
Enabled = false
RetryInterval = '5m'
MaxRetryCount = 10

[ApplicationSettings]
DeviceNames = "Random-Float-Device, Random-Integer-Device"
ValueDescriptors = "RandomValue_Float32, RandomValue_Int32"

The following are the Application Service specific configuration items.

• [Binding] is where you configure the input Trigger
• [MessageBus] is where you configure the MessageBus Trigger type and

host information
• [StoreAndForward] is where you enable and configure the new Store and

Forward capability
• [ApplicationSetting] is where you can add custom configuration. Note this

is a simple Map of strings

The rest of the Application Service’s configuration is either boilerplate
EdgeX configuration or for the Configurable Pipeline.

19

edgexfoundry.org | @edgexfoundry

Command Line options

-o
-overwrite

Overwrite configuration in the Registry with
local values.

-s
-skipVersionCheck

Indicates the service should skip the Core
Service's version compatibility check.

The SDK provides the following specific command line options.

20

edgexfoundry.org | @edgexfoundry

Store & Forward
The Store and Forward capability allows for export functions to persist data on failure
and for the export of the data to be retried at a later time.

• The retry restarts function pipeline with function persisted the data.

• On successful retry the execution of the pipeline continues

• Retry interval and max number of retries is configurable

• Stored data is removed when:
• Successful retry

• Max reties exceeded

Note: The order the data exported via this retry mechanism is not guaranteed
to be the same order in which the data was initial received from Core Data

21

edgexfoundry.org | @edgexfoundry

Misc Features
• Appsdk

• AddRoute()

• ApplicationSettings() map[string]string

• Helpers
• util.CoerceType()

• util.DeleteEmptyAndTrim() & util.SplitComma()

util.DeleteEmptyAndTrim(strings.FieldsFunc(deviceNames, util.SplitComma))

AddRoute()
Allows adding custom routes to the existing webserver

ApplicationSettings()
Returns the values (map[string]string) specified in the custom
[ApplicationSettings] configuration section.

util.CoerceType()
converts a string, []byte, or json.Marshaler type to a []byte for use and
consistency in pipeline functions.

util.DeleteEmptyAndTrim() & util.SplitComma()
use custom split func instead of .Split to eliminate empty values (i.e Test,,,)

22

edgexfoundry.org | @edgexfoundry

READMEs

• https://github.com/edgexfoundry/app-functions-sdk-go

• https://github.com/edgexfoundry/app-service-configurable

23

edgexfoundry.org | @edgexfoundry

https://github.com/rsdmike/labs

Labs 3, 4 & 5
35+ mins

24

