
edgexfoundry.org | @edgexfoundry

An Introduction

Slides by Michael Hall
Modified and Presented by Alex Courouble

edgexfoundry.org | @edgexfoundry

Edge Computing

Why do I need it?

edgexfoundry.org | @edgexfoundry

Who is EdgeX Foundry?

And how to join us

Vendor-neutral open source project hosted by The Linux Foundation building a
common open framework for IoT edge computing.

Interoperability framework and reference platform to enable an ecosystem of
plug-and-play components that unifies the marketplace and accelerates the
deployment of IoT solutions.

Architected to be agnostic to protocol, silicon (e.g., x86, ARM), OS (e.g., Linux,
Windows, Mac OS), and application environment (e.g., Java, JavaScript, Python,
Go Lang, C/C++) to support customer preferences for differentiation

Part of the LF Edge project at the Linux Foundation

LF Edge Premium Members

LF Edge General Members

● GitHub:
○ https://github.com/edgexfoundry

● Documentation
○ https://docs.edgexfoundry.org

● Slack
○ https://slack.edgexfoundry.org

● Mailing Lists
○ https://lists.edgexfoundry.org

○ https://lists.edgexfoundry.org/calendar

● Open Source and contributor

driven, anybody can participate

● TSC and WG meetings open to

public

● Technical leadership (TSC & WG

chairs) elected by technical

contributors

Getting Involved

https://github.com/edgexfoundry
https://docs.edgexfoundry.org
https://chat.edgexfoundry.org
https://lists.edgexfoundry.org
https://lists.edgexfoundry.org/calendar

edgexfoundry.org | @edgexfoundry

What is EdgeX?

Microservices and Deployments

edgexfoundry.org | @edgexfoundry

Walkthrough

Let’s see it in action

Get Started in Three Steps

1. Run the EgdeX Microservices with Docker Compose

2. Create a Device Service with device-sdk-go

3. Create an Application Service with app-function-sdk-go

Deploying with Docker
● Install docker & docker-compose

● Download the compose file from the developer-scripts repo:
○ https://raw.githubusercontent.com/edgexfoundry/developer-scripts/master/releases/edinburgh/compose-files/docker-co

mpose-edinburgh-no-secty-1.0.1.yml

● docker-compose -f docker-compose-edinburgh-no-secty-1.0.1.yml up -d

https://docs.docker.com/install/
https://docs.docker.com/compose/install/
https://raw.githubusercontent.com/edgexfoundry/developer-scripts/master/releases/edinburgh/compose-files/docker-compose-edinburgh-no-secty-1.0.1.yml
https://raw.githubusercontent.com/edgexfoundry/developer-scripts/master/releases/edinburgh/compose-files/docker-compose-edinburgh-no-secty-1.0.1.yml

Creating a Device Service
● Define a Device Profile

● Implement the device sdk functions

● Build and Run the service

● Tutorial: https://docs.edgexfoundry.org/Ch-GettingStartedSDK-Go.html

https://docs.edgexfoundry.org/Ch-GettingStartedSDK-Go.html

Defining your device - Device Profile
name: "camera monitor profile"
manufacturer: "Dell"
model: "Cam12345"
labels:
 - "camera"
description: "Human and canine camera monitor profile"
commands:
 -
 (Next Slide)

Defining your device - Device Profile - Commands
commands:
 -
 name: People
 get:
 path: "/api/v1/devices/{deviceId}/peoplecount"
 responses:
 -
 code: "200"
 description: "Number of people on camera"
 expectedValues: ["humancount"]
 -
 code: "503"
 description: "service unavailable"
 expectedValues: ["cameraerror"]

Defining your device - Device Profile - Commands
 name: ScanDepth
 get:
 ...
 put:
 path: "/api/v1/devices/{deviceId}/scandepth"
 parameterNames: ["depth"]
 responses:
 -
 code: "204"
 description: "Set the scan depth."
 expectedValues: []
 -
 code: "503"
 description: "service unavailable"
 expectedValues: ["cameraerror"]

Implementing Device SDk Functions
Initialize() // Device service start

HandleReadCommand() // Get command called

HandleWriteCommand() // Put command called

Stop() // device stopped

AddDevice() // device added

UpdateDevice() // device updated

RemoveDevice() // device removed

Calling device commands
GET to http://localhost:48082/api/v1/device/name/countcamera1

http://localhost:48082/api/v1/device/name/countcamera1

Calling device commands
PUT to http://localhost:48082/api/v1/device/<device id>/command/<command id>

{
"depth":"9"

}

Reading events
GET to http://localhost:48080/api/v1/event/device/countcamera1/10

GET to http://localhost:48080/api/v1/reading/name/humancount/10

http://localhost:48080/api/v1/event/device/countcamera1/10
http://localhost:48080/api/v1/reading/name/humancount/10

Building an Application Service
● app-function-sdk: https://github.com/edgexfoundry/app-functions-sdk-go/

● Build a function pipeline with built-in functions or custom functions
○ Pipeline is triggered on each event generated by your device

○ Can be used to filter and export events or send a command to a device

○ Each function in the pipeline receives the value returned by the previous function

https://github.com/edgexfoundry/app-functions-sdk-go/

Building an Application Service
edgexSdk.SetFunctionsPipeline(
 transforms.NewFilter(deviceNames).FilterByDeviceName,
 transforms.NewConversion().TransformToXML,
 printXMLToConsole //Custom function
)

func printXMLToConsole(edgexcontext *appcontext.Context, params ...interface{})
(bool, interface{}) {

if len(params) < 1 {
// We didn't receive a result
return false, nil

}

fmt.Println(params[0].(string))

// Leverage the built in logging service in EdgeX
edgexcontext.LoggingClient.Debug("XML printed to console")
edgexcontext.Complete([]byte(params[0].(string)))
return false, nil

}

Sample App on Raspberry Pi
● Tutorial on how to deploy EdgeX on a RPI
● Includes:

○ Detailed instructions on how to setup RPI with 64-bit OS
○ Custom docker-compose file with ARM images
○ Sample Virtual GPS Device to get started with gps coordinate data

● https://github.com/vmware-samples/automotive-iot-samples/tree/master/edge
x_sample

https://github.com/vmware-samples/automotive-iot-samples/tree/master/edgex_sample
https://github.com/vmware-samples/automotive-iot-samples/tree/master/edgex_sample

edgexfoundry.org | @edgexfoundry

Developing & Contributing

Install Go
Get GoLang 1.11.x:

wget https://dl.google.com/go/go1.11.8.linux-amd64.tar.gz

sudo tar -C /usr/local -xvf go1.11.8.linux-amd64.tar.gz

Setup your environment
cat >> ~/.bashrc << ‘EOF’
export GOPATH=$HOME/go
export PATH=/usr/local/go/bin:$PATH:$GOPATH/bin
EOF

source ~/.bashrc

https://dl.google.com/go/go1.11.8.linux-amd64.tar.gz

Install MongoDB
● sudo apt install mongodb-server
● systemctl status mongodb
● wget

https://github.com/edgexfoundry/docker-edgex-mongo/raw/master/init_mongo.js
● sudo -u mongodb mongo < init_mongo.js

https://github.com/edgexfoundry/docker-edgex-mongo/raw/master/init_mongo.js

Get the EdgeX source code
● go get github.com/edgexfoundry/edgex-go

● cd ~/go/src/github.com/edgexfoundry/edgex-go

● sudo apt install libczmq-dev

● make build

● make run

● cd ./docs

● ./build.sh

Setup your git repository
● Fork https://github.com/edgexfoundry/edgex-go

● git remote add mygithub https://github.com/<your_username>/edgex-go.git

● git config --global.user.name “John Doe”

● git config --global.user.email johndoe@example.com

https://github.com/edgexfoundry/edgex-go
https://github.com/edgexfoundry/edgex-go.git

Contributing changes
● git checkout -b your_fix_branch_name

● git add <files you changed>

● git commit --signoff -m “Your commit message”

● git push mygithub your_fix_branch_name

PR review and approval
● Pass DCO Signoff

● Pass automated tests

● Have at least one approving

review

