
edgexfoundry.org | @edgexfoundry

Application Services

Design

Application Working Group

2018-12-11

edgexfoundry.org | @edgexfoundry

LF Antitrust Policy Notice

• EdgeX Foundry meetings involve participation by industry competitors, and it is the
intention of the Linux Foundation to conduct all of its activities in accordance with
applicable antitrust and competition laws. It is therefore extremely important that
attendees adhere to meeting agendas, and be aware of, and not participate in, any
activities that are prohibited under applicable US state, federal or foreign antitrust and
competition laws.

• Examples of types of actions that are prohibited at EdgeX Foundry meetings and in
connection with Linux Foundation activities are described in the Linux Foundation
Antitrust Policy available at http://www.linuxfoundation.org/antitrust-policy. If you have
questions about these matters, please contact your company counsel, or if you are a
member of the Linux Foundation, feel free to contact Andrew Updegrove of the firm of
Gesmer Updegrove LLP, which provides legal counsel to the Linux Foundation.

http://www.linuxfoundation.org/antitrust-policy

edgexfoundry.org | @edgexfoundry

Meeting Logistics

• Time: December 11, 2018 11am PDT – 12am PDT

Join from PC, Mac, Linux, iOS or Android: https://zoom.us/j/611544838

Or iPhone one-tap :

US: +16465588656,,611544838# or +16699006833,611544838#

Or Telephone:

Dial(for higher quality, dial a number based on your current location):

US: +1 646 558 8656 or +1 669 900 6833

or +1 855 880 1246 (Toll Free) or +1 877 369 0926 (Toll Free)

Meeting ID: 611 544 838

International numbers available: https://zoom.us/u/aoLL4E9yo

https://zoom.us/j/611544838
https://zoom.us/u/aoLL4E9yo

edgexfoundry.org | @edgexfoundry

EdgeX – Application Services

Vault

Credentials

Message Bus

Export Topic

JSON
TRXIN

P
U

T

O
U

TP
U

T

Core
Data

Core Data

Data/Device
Filter

IN
P

U
T

O
U

TP
U

T

Transform

Compress

Compression
TRX

IN
P

U
T

O
U

TP
U

T MQTT
PublisherIN

P
U

T

edgexfoundry.org | @edgexfoundry

Message Bus Config

• Set of preconfigured Topics/Channels

• Core data

• Validated Core data

• Transform

• Compress

• Export

• Custom 1…n?

• Create topics on boot and provide config mechanism (bootstrapping process)

• At the moment core data uses one single topic/channel in 0MQ

• Abstraction layer between Mbus and Microservices

• Security – Who can connect to Message bus?

• Pick a message bus which supports security and implement in future

edgexfoundry.org | @edgexfoundry

Discussion on Message Bus

• How to discover the topics/channels on the Message bus

• Register to Sys-config or use consul

• Provide example set of topics which are not mandatory

• ZeroMQ - Issue reported running it on Windows (40% developers target windows - developer survey).

• ZeroMQ can run in container in Windows

• Docker has performance issues on Windows (order of magnitude slower - last year data)

• There is ZeroMQ installer for Windows - Need to test and talk to Jim on the issue he reported.

• Pluggable Implementation

edgexfoundry.org | @edgexfoundry

Discussion on Message Bus

• Message Bus - Single vs Multiple

• Pluggable Implementation

• Need an SDK, share library, shared objects

• Abstraction interface and APIs

• Properties that Implementation Offers:

• Architecture Support (x86/ARM, 64/32bit)

• Footprint

• Scalability

• Guaranteed Delivery

• OS Support (Linux/Win)

• Ordering

• Language Support (Go, C)

• Footprint

• QoS

• Performance

• Filtering

• Tenancy,

• Security,

• Connection

• First implementation: split everything in export-distro except MQTT

into independent services that use the MQTT exporter for the

message bus

edgexfoundry.org | @edgexfoundry

Message Bus Options
Name Licence Size Prd. Ready Lang. Client OS Support

0MQ

Nanomsg

GRPC

Thrift

DPS (Intel) https://github.com/intel/dps-for-iot

Mosquito EPL/EDL very lightweight Yes C Linux, Win, Mac

Paho EPL-1.0 lightweight Yes C C, Go, Java, ... Linux, Win, Mac (client)

Apache ActiveMQ Apache License 2.0 Yes Java Java, C, C++, C#, ... Linux, Win, Mac

Apache Apollo

RabbitMQ MPL 1.1. lightweight Yes Erlang Erlang,Java, .NET, PHP, Python,
JavaScript, Ruby, Go

Linux, Win, Mac

Qpid Apache License 2.0 J, C++ Linux, Win, Mac

NATS Apache License 2.0 lightweight Yes Go Linux, Win, Mac

https://github.com/intel/dps-for-iot

edgexfoundry.org | @edgexfoundry

Data Device Filter

• Data device Filter service is used for data filtering:
• Only give me readings from device A
• Filter by Value
• Only give me readings regarding temperature
• Only give me readings from devices which

belong to user A
• …

• Should we have multiple Data Device filter
Services? Yes

• Should the different services output to different
message bus topics/channels?

• Should this microservice be implemented as
example of Serverless function?

edgexfoundry.org | @edgexfoundry

Transformation Service (JSON)

• Transformation Service transforms the validated
data:

• Convert C to F values
• Convert meter to feet values
• Convert CBOR to Protobuf
• Converts data to

• JSON
• XML
• CSV
• ……

• Enrich (add device metadata to reading)

• Use Go Kit Framework

edgexfoundry.org | @edgexfoundry

Compress Service

• This services does compression as
a final part of data processing in the
application services before exporting
data to the target

• really different kind of transformation

• Use Go Kit Framework

edgexfoundry.org | @edgexfoundry

Export Service – MQTT Exporter

• MQTT protocol

• Credentials Stored in Vault

• Are we able to store connection
string in Vault

• Use Go Kit Framework

• Sync with System Management
Agent on additional metrics and
logging

edgexfoundry.org | @edgexfoundry

Scope of Initial Work
• These tasks are to create 2 new micro services using GoKit framework and a

message bus abstraction to do the following:

• Microservice for pulling data from Core data via ZeroMQ and publishing that
data to a message bus (name TBD, for now referring to it
CoreDataProvider)

• Microservice for pulling data (subscribing) from the message bus and
publishing it a to a Cloud base MQTT (MQTT Exporter)

• Message bus abstraction/plugin architecture so any message bus that has
an implementation for our abstraction can be used.

• Includes a reference message bus implementation for TBD message bus.

edgexfoundry.org | @edgexfoundry

Tasks for Message Bus abstraction/plugin

• Define minimal abstraction API that is required

• Create plug-in wrapper class that implements minimal abstraction API

• Must load implementation library (SO file) from a known plug-ins directory

• Maps/forwards func calls to loaded implementation

• Create implementation library (SO file) of minimal abstraction API for TBD
Message Bus.

edgexfoundry.org | @edgexfoundry

Tasks for CoreDataProvider
• Spin up on GoKit (if not already)

• https://gokit.io/examples/
• Specifically want to use GoKit for REST API, Logging, metrics and tracing

• Define REST API if any needed

• Create initial micro service using GoKit

• Create Connection to Core Data via ZeroMQ to receive raw data

• Create Connection to Message Bus via abstract message bus above to publish raw data

• Implement handler that receives the raw data from ZeroMQ and publishes it on the Message Bus.

• Implement REST API if any needed

• Implement standard configuration and registration with Consul
• Includes watcher for configuration changes

• All implementations above include logging, metrics and tracing via GoKit.

https://gokit.io/examples/

edgexfoundry.org | @edgexfoundry

Tasks for MQTT Data exporter
• Spin up on GoKit (if not already)

• https://gokit.io/examples/
• Specifically want to use Gokit for REST API, Logging, metrics and tracing

• Create initial micro service using GoKit

• Create Connection to Message Bus via abstract message bus above to received raw data

• Implement storing/loading MQTT authorization to/from vault.

• Implement standard configuration and registration with Consul
• Include watcher for configuration changes

• Implement MQTT exporter by copying existing MQTT code from current export distro
• edgexfoundry/edgex-go/internal/export/distro/mqtt.go

• Implement handler that receives the raw data from message bus and sends it to cloud via MQTT exporter

• All implementations above include logging, metrics and tracing via GoKit.

https://gokit.io/examples/

edgexfoundry.org | @edgexfoundry

Standard Template for GoKit micro service

• This begs for an EdgeX standard micro service quick start template based on
GoKit that:

• Sets up REST API support

• Implements standard configuration and registration with Consul

• Includes watcher for configuration changes

• Other common stuff for logging, metrics, tracing, etc.

