
Proposed Export Service
Refactor

For Delhi (or later)

Premise

• Export Distribution is essentially an EAI (enterprise application
integration) problem

• Going forward, having one export service will not scale
• It will contains too much code for all the possible formats, transformations,

endpoint, etc.

• Most of the code is not used in any single deployment

• The copying of messages per client will not scale either

• Client registration may not be dynamic & and could be done by
configuration

• End users need something simpler

What does export do anyway?

• Export Distribution is about taking incoming Events/Readings and:
• Validating the data in the Event/Reading (valid device, valid readings, etc.)
• Filtering (per device or value descriptor today, but that could be open to other

filters like temps between a range, etc. later)
• Transforming the data to the preferred format (XML, JSON today but could be

YAML, TOML, CSV, etc.)
• Perform other transformation operations (optionally compressing it,

optionally encrypting it today)
• Delivering the data to the endpoint of choice via protocol of choice (which is

MQTT, MQTTS, HTTP, HTTPS, cloud, Rules Engine, analytics provider etc.).
• This could be on box (to another service)
• This could be off box (to cloud or enterprise or on prem server)

The Proposed New Export Service

• Develop a scaffold template or “SDK” that allows the easy creation of new export distribution
services
• The scaffolding keeps the message data moving through a pipe/filter system
• Modules provide the validation, filtering, transforming, etc.
• New export services are created from the scaffolding and a selection (or custom created) modules

• We would need to define the API, input and output of each module (much as EAI does) so that
they are easily connected into the scaffolding.
• Much of this is already done with our existing export

• We would define some reference implementations of many of the modules
• For transformation, filtering, etc.
• For endpoint distribution to Azure, AWS, etc. (not unlike how we provide Modbus, BACnet, etc. device

services today).
• We would have no-op implementation module that do nothing for that stage of work

• The “SDK” could be done in multiple languages in the future.
• Any existing EAI tool could be used to provide the scaffolding and modules when it exists (example: Spring

Integration when using Java).

“Application Services”

• In the future, there is not one export service, but many export
services – one per export use case
• I recommend we call these “application services” that facilitate connectivity

to various application needs
• Not unlike how device services provide connectors to devices/sensors

• The export client service becomes optional
• We configure the application service
• Optionally the users or community could build export clients to facilitate the

dynamic change to an application service where necessary

• The old Export Services could co-exist with the new export services
until we are ready to retire it.

Proposed Application Service Design

FilterValidate Transform
Format

Transform
Subscriber

ZeroMQ (or other
message bus)

Publish
/Sendor

Application Service
Scaffolding

Core Data
CEP, Rules Engine or

local analytics

Cloud, OnPrem
Server or Enterprise

ZeroMQ
Subscriber

EdgeX Reference implementation Export Plugins

Event/Reading
Validator

Device
Filter

Value Descriptor
Filter

JSON TRX

XML TRX

Compression
TRX

Encrypt
TRX

HTTP Publisher

Azure IoT Hub
Publisher

...NO-OP Filter
NO-OP TRX

Example A Application Service

FilterValidate Transform
Format

Transform
Subscriber

ZeroMQ (or other
message bus)

Publish
/Sendor

Applicaiton Service
Scaffolding

Core Data
CEP, Rules Engine or

local analytics

Cloud, OnPrem
Server or Enterprise

ZeroMQ
Subscriber

Event/Reading
Validator

JSON TRX
Encrypt

TRX
Azure IoT Hub

Publisher
NO-OP Filter

Example B Application Service

FilterValidate Transform
Format

Transform
Subscriber

ZeroMQ (or other
message bus)

Publish
/Sendor

Application Service
Scaffolding

Core Data
NodeRed

Local Analytics

ZeroMQ
Subscriber

Event/Reading
Validator

Device
Filter

Value Descriptor
Filter

Custom
Format TRX

No-op
TRX

NodeRed
Sendor

EdgeX with multiple Application Services

ZeroMQ (or other
message bus)

Core Data
CEP, Rules Engine or

local analytics

Azure IoT Hub

Application Service A

ZeroMQ
Subscriber

Event/Reading
Validator

JSON
TRX

Encrypt
TRX

Azure IoT Hub
Publisher

NO-OP Filter

Application Service B

ZeroMQ
Subscriber

Event/Reading
Validator

JSON
TRX

Encrypt
TRX

Azure IoT Hub
Publisher

NO-OP Filter

Application Service C

ZeroMQ
Subscriber

Event/Reading
Validator

JSON
TRX

Encrypt
TRX

Azure IoT Hub
Publisher

NO-OP Filter

