Proposed Export Service
Refactor

For Delhi (or later)

Premise

* Export Distribution is essentially an EAI (enterprise application
integration) problem

* Going forward, having one export service will not scale

* |t will contains too much code for all the possible formats, transformations,
endpoint, etc.

* Most of the code is not used in any single deployment
* The copying of messages per client will not scale either

* Client registration may not be dynamic & and could be done by
configuration

* End users need something simpler

What does export do anyway?

 Export Distribution is about taking incoming Events/Readings and:
* Validating the data in the Event/Reading (valid device, valid readings, etc.)

* Filtering (per device or value descriptor today, but that could be open to other
filters like temps between a range, etc. later)

* Transforming the data to the preferred format (XML, JSON today but could be
YAML, TOML, CSV, etc.)

e Perform other transformation operations (optionally compressing it,
optionally encrypting it today)
» Delivering the data to the endpoint of choice via protocol of choice (which is
MQTT, MQTTS, HTTP, HTTPS, cloud, Rules Engine, analytics provider etc.).
* This could be on box (to another service)
* This could be off box (to cloud or enterprise or on prem server)

The Proposed New Export Service

Develop a scaffold template or “SDK” that allows the easy creation of new export distribution
services

* The scaffolding keeps the message data moving through a pipe/filter system
* Modules provide the validation, filtering, transforming, etc.
* New export services are created from the scaffolding and a selection (or custom created) modules

We would need to define the API, input and output of each module (much as EAl does) so that
they are easily connected into the scaffolding.

* Much of this is already done with our existing export

We would define some reference implementations of many of the modules
* For transformation, filtering, etc.

* For endpoint distribution to Azure, AWS, etc. (not unlike how we provide Modbus, BACnet, etc. device
services today).

* We would have no-op implementation module that do nothing for that stage of work

The “SDK” could be done in multiple languages in the future.

e Any existing EAIl tool could be used to provide the scaffolding and modules when it exists (example: Spring
Integration when using Java).

“Application Services”

* In the future, there is not one export service, but many export
services —one per export use case

* | recommend we call these “application services” that facilitate connectivity
to various application needs

* Not unlike how device services provide connectors to devices/sensors

* The export client service becomes optional

* We configure the application service

* Optionally the users or community could build export clients to facilitate the
dynamic change to an application service where necessary

* The old Export Services could co-exist with the new export services
until we are ready to retire it.

Proposed Application Service Design

Cloud, OnPrem
erver or Enterprisg

Application Service
Scaffolding

: . Format ;

Subscriber Vali Filter T f Publish

ZeroMQ (or other U alidate U H Transform H ranstorm /Sendor
message bus)

A

EdgeX Reference implementation Export Plugins

CEP, Rules Engine or
local analytics

Core Data

Example A Application Service

Applicaiton Service

Cloud, OnPrem
erver or Enterprisg
Scaffolding

e I | NS | S | -H-_

message bus)

A

Example B Application Service

Application Service

Scaffolding ‘)

(

ZeroMQ (or other
message bus)

A

Format TRX

Custom

NodeRed <
Local Analytics

NodeRed

i

Sendor

| S——

EdgeX with multiple Application Services

Azure loT Hub

Application Service A

Application Service B

Il

ZeroMQ (or other
message bus)

A

Application Service C

CEP, Rules Engine or
local analytics

Core Data

