
edgexfoundry.org | @edgexfoundry

Technical Workshop

Mainflux Open Source IoT Platform

Day 2: June 2, 2017

edgexfoundry.org | @edgexfoundry

Mainflux ïPlatform Overview

edgexfoundry.org | @edgexfoundry

Mainflux ïDevelopment Philosophy

edgexfoundry.org | @edgexfoundry

Mainflux ïLoRa End 2 End Solution

edgexfoundry.org | @edgexfoundry

Mainflux ïSystem

Architecture

edgexfoundry.org | @edgexfoundry

Mainflux Embraces OSS Model

ñIn the past, software products were largely developed in-house. Now we are repeatedly downloading code
from the Internet to evaluate, prototype, and integrate. We only code the parts that are truly unique to our
application.ò - Linux Foundation

edgexfoundry.org | @edgexfoundry

Mainflux ïSystem Architecture

edgexfoundry.org | @edgexfoundry

Devices

ÅMCU + RF front-end

ÅBare-metal or small RTOS (for HAL
and drivers)

ÅConstrained CPU clocking (low on
kHz)

ÅConstrained flash and RAM

ÅBattery powered devices

Heavy networking stack just won't fit!

And every radio TX/RX is power hungry!

edgexfoundry.org | @edgexfoundry

Devices ïIoT Node Mode of Operation

ÅSleep most of the time - wake up
just to send telemetry, then go to
sleep again

ÅKeep the messages short to save
power (less protocol overhead,
less metadata in the header, etc...)

edgexfoundry.org | @edgexfoundry

Devices ïMainflux ïSupported Protocols

ÅDevices
ÅMQTT

ÅCoAP

ÅApps
ÅHTTP

ÅWS

edgexfoundry.org | @edgexfoundry

NginX ïReverse Proxy

ÅLoad Balance - scaling, HA, Fault
Tolerance.

ÅSSL termination - keep these certs at
one place. MQTT is pure TCP, and
CoAP is UDP.

ÅPEP (Policy Enforcement Point)
Proxy - forward the req for auth to
Auth server (Policy Decision Point).

Intercept the requests and send them
for Auth

edgexfoundry.org | @edgexfoundry

Mainflux ïDevice Management

ÅMainflux Platform is multi-user,
multi-device, multi-app.

ÅManagement subsystem exposes
RESTful API for system entities
provisioning:
ÅUsers

ÅDevices

ÅChannels

ÅOrganizations

ÅApplications

edgexfoundry.org | @edgexfoundry

Mainflux ïProvision Device Model

curl - s - S - i - X POST - H "Accept: application/json" \

- H "Content - Type: application/json" http://localhost:7070/devices

HTTP/1.1 201 Created

Content - Type: application/json; charset =utf - 8

Date: Tue, 29 Nov 2016 21:49:26 GMT

Content - Length: 69

{

"response" : "created" ,

"id" : "e35b157f - 21b8- 4adb- ab59- 9df21461c815"

}

edgexfoundry.org | @edgexfoundry

Mainflux ïProvision Channel

curl - s - S - X POST - H "Accept: application/json" \

- H "Content - Type: application/json" http://localhost:7070/channels

{

"response" : "created" ,

"id" : "5c912c4e - e37b- 4ba6- 8f4b - 373c7ecfeaa9"

}

edgexfoundry.org | @edgexfoundry

Mainflux ïDevice Messaging Subsystem

ÅMessaging subsystem is composed of
following microservices:
ÅHTTP Message Sender

ÅMQTT (and WS) Broker

ÅCoAP Server

ÅNATS Broker

ÅInfluxDB Writer

ÅInfluxDB Reader

ÅItôs role is to distribute messages
between various clients that can connect
via various protocols - i.e. it makes a
messaging bridge between them.

HTTP-to-WS-to-MQTT-to-CoAP?

Yes. Mainflux is bridging
protocols.

edgexfoundry.org | @edgexfoundry

NATS

ÅBrokers the IoT messages as an
events in Mainflux NATS Message
Format.

ÅMainflux Message Format:
message MM {

string channel;

string protocol;

string publisher;

string content_type;

Bytes payload;

}

edgexfoundry.org | @edgexfoundry

HTTP

HTTP Message Sender is an HTTP Server that exposes

RESTful API for sending (and sending only, not

receiving) IoT messages received from HTTP clients

(devices and applications).

ÅMessage is sent in the form of SenML.

ÅEnd Point:

/channels/<channel_id>/messages

edgexfoundry.org | @edgexfoundry

MQTT

ÅMQTT broker accepts and publishes SenML
and binary messages to MQTT clients and at
the same time on NATS broker for database
persistence and analytics.

ÅSenML JSON messages are published on
channels/<channel_id>/messages/senml-json.

ÅBinary messages are published on
channels/<channel_id>/messages/octet-stream.

edgexfoundry.org | @edgexfoundry

CoAP

ÅCoAP server accepts CoAP (UDP)
connections

ÅRESTful-like API for sending IoT
messages received from CoAP clients
(devices and applications)

ÅRESTful-like API for CoAP-observing
(similar to MQTT subscribing) of
message channels.

ÅSenML message format.

edgexfoundry.org | @edgexfoundry

SenMLïModel for IoT Messages

ÅIETF standard (https://tools.ietf.org/html/draft-ietf-core-
senml-05)
ÅProvides simple model for retrieving data from sensors

and controlling actuators
ÅProvides minimal semantics for the data inline and allows

for more metadata with in-line extensions and links

edgexfoundry.org | @edgexfoundry

SenMLïMessage Format

[

{ "bn" : "urn:dev:ow:10e2073a0108006;" , "bt" : 1.276020076001e+09 ,

"bu" : "A" , "bver" : 5,

"n" : "voltage" , "u" : "V" , "v" : 120.1 },

{ " n" : "current" , "t " : - 5, "v" : 1.2 },

{ " n" : "current" , "t " : - 4, "v" : 1.3 },

{ " n" : "current" , "t " : - 3, "v" : 1.4 },

{ " n" : "current" , "t " : - 2, "v" : 1.5 },

{ " n" : "current" , "t " : - 1, "v" : 1.6 },

{ "n" : "current" , "v" : 1.7 }

]

edgexfoundry.org | @edgexfoundry

Binary Message Format

ÅMessage is sent in the form of binary blob.

ÅMainflux doesnôt parse the binary message.

ÅBinary message is stored in the database.

Å3rd Party App would have to parse the message and use it.

edgexfoundry.org | @edgexfoundry

Reporting Values (aka. Send Message)

curl - s - S - i - X POST - H "Accept: application/json" \

- H "Content - Type: application/json" \

http://localhost:7070/channels/78c95058 - 7ef3 - 454f - 9f60 - 82569ddec4e2/msg \

- d '[{"bn":"some - base- name:","bt":1.276020076001e+09, "bu":"A","bver":5,

"n":"voltage","u":"V","v":120.1}, {"n":"current","t": - 5,"v":1.2},

{"n":"current","t": - 4,"v":1.3}]'

HTTP/1.1 202 Accepted

Content - Type: application/json; charset =utf - 8

Date: Sun, 18 Dec 2016 18:25:36 GMT

Content - Length: 28

{

"response" : "message sent"

}

edgexfoundry.org | @edgexfoundry

MQTT PUB

mosquitto_pub - i 472dceec- 9bc2- 4cd4- 9f16 - bf3b8d1d3c52 \

- t mainflux /channels/5c912c4e - e37b- 4ba6- 8f4b - 373c7ecfeaa9 \

- m '[{"bn":"e35b157f - 21b8- 4adb- ab59- 9df21461c815",

"bt":1.276020076001e+09, "bu":"A","bver":5,

"n":"voltage","u":"V","v":120.1},

{" n":"current","t ": - 5,"v":1.2},

{" n":"current","t ": - 4,"v":1.3}]'

edgexfoundry.org | @edgexfoundry

Mainflux ïAuth Subsystem

ÅPolicy Based Auth.

ÅSupports OAuth2.0 for Apps.

ÅJWT and Certs for Devices.

ÅActs as Identity Provider.

ÅBased on Hydra and Ladon.

edgexfoundry.org | @edgexfoundry

Mainflux ïDevice Auth Constraints

ÅUDP is more lightweight than TCP

ÅTLS becomes a problem (DTLS for UDP, but implementation
missing in many languages)

ÅElliptic Curve Cryptography - Diffie-Hellman

ÅHW encryption engine helps

edgexfoundry.org | @edgexfoundry

Mainflux ïDevice Auth ïAuthX

ÅCA must be burned into device flash for server auth for TLS

ÅClient-side certificates -
TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256

ÅJWT

ÅOAuth2.0 Client Secret - how do we issue temporary token to
devices?

edgexfoundry.org | @edgexfoundry

Mainflux ïDevice Auth ïAuthZ

ÅScoped API keys - JWT

ÅDrawback - no revoke, and device JWT has infinite TTL

ÅRevoke destroys stateless approach - so use just for session
tokens with low TTL and no revoke

ÅMainflux uses Access Control Policies - inspired by AWS IAM
Policies

edgexfoundry.org | @edgexfoundry

Applications

ÅMainflux CLI

ÅMainflux UI (WIP)

Å3rd Party Apps

edgexfoundry.org | @edgexfoundry

Mainflux ïDeployment

edgexfoundry.org | @edgexfoundry

Mainflux ïInstall / Deploy Docker Images

ÅClone the repo:
Ågit clone https://github.com/Mainflux/mainflux.git && cd mainflux

ÅStart the Docker composition:
Ådocker-compose up

ÅThis will automatically download Docker images from Mainflux
Docker Hub and deploy the composition of Mainflux microservices.

edgexfoundry.org | @edgexfoundry

Mainflux ïCompile the Source Code

ÅGo compiles to static binary

ÅCan be compiled to run on:
ÅLinux

ÅWindows

ÅMac

ÅARM devices

ÅCan be deployed on RPi or similar systems.

edgexfoundry.org | @edgexfoundry

Mainflux ïFuture Plans

edgexfoundry.org | @edgexfoundry

Mainflux ïFuture Plans

ÅEvaluate Mainflux as EdgeX Gateway Manager.

ÅEvaluate Mainflux as Device Manager for devices connected to
EdgeX.

ÅEvaluate Mainflux as Security Manager for EdgeX.

ÅPush Sensor Data to Hyperledger.

ÅAdd Machine Learning and Data Analysis Layer on top of Mainflux.

edgexfoundry.org | @edgexfoundry

Mainflux ïThe Team

MAINFLUXTEAM
Mainflux team has an extensive working experience and knowledge of hardware and intelligent devices and can provide

operational expertise for the best cost-quality related solutions and support needed for every IoT project. Our expertise

covers every functional aspect of the networking technology required for connecting objects, including its huge market

and a large number of manufacturers.

DRASKO DRASKOVIC
MAINFLUX PROJECT CO-FOUNDER

M.Sc. Electronics

Draġkohas over 15 years of professional experience

gained in fortune 500 companies as well as

technological start-ups. He worked in telecom and

semiconductor giants like NOKIA, Alcatel-Lucent,

Texas Instruments and PHILIPS - being engaged in

embedded systems, semiconductor, and

telecommunication technologies.

JANKO ISIDOROVIC

Janko gained comprehensive work experience in

NELT, South Europe's biggest logistic and distribution

company (P&G, Kraft Foods, Wrigley) as Project

Manager, System Architect and Application & System

Engineer.

He has been managing highly technical projects as

company acquisition, MVNO enablement, OTT

services setup.

MAINFLUX PROJECT CO-FOUNDER

M.Sc. Telecommunications

NIKOLA MARCETIC
SOFTWARE DEVELOPMENT

M.Sc. Economy

Nikola has experience of more than eight years,

covering a wide range of technologies and IT

directions, from IT administration over computer

networks and security, system architecture to

software development and testing.

SASA KLOPANOVIC

Recently engaged in the biggest real estate project in

South-East Europe master-planned by world

renowned architects, Saġagained significant working

experience in communication with international

companies, eminent consultancies, and government

institutions.

BUSINESS DEVELOPMENT

M.Sc. In Philosophy

