
Protecting EdgeX Secrets (Edinburgh release) 
As of the California release, EdgeX has a standalone micro service secret store (provided by Hashicorp 

Vault) for centralize management of credentials and sensitive data across EdgeX.  While the secret store 

has been in place, it has not yet been used to store the secrets of the other EdgeX micro services.  With 

the Edinburgh release, that will change as EdgeX secrets will begin to be stored in Vault.  Secrets include 

usernames, passwords, certificates, tokens, etc. used by the micro services. 

This sounds straightforward, but can actually be a complex task.  How do the secrets get into secret 

store?  How does the micro service know where/how to get to its secrets and what permission need to 

be granted to the micro service so that it has access to retrieve its own secrets?  How are secrets 

organized inside of the secret store? 

In this document, we outline the overall design of the EdgeX Edinburgh secure storage usage. 

Threat and Purpose 
The intention of the work for this release is to avoid having any EdgeX micro service secret stored in 

plain sight in source control.  For example, today, the MongoDB username and password are shown 

clearly in files like init_mongo.js and clean_mongo.js (see https://github.com/edgexfoundry/developer-

scripts/blob/master/init_mongo.js).  Usernames, passwords, tokens, etc. could also be found in 

configuration files stored in source control for many services – importantly for those using the database 

(see https://github.com/edgexfoundry/edgex-go/blob/master/cmd/core-

data/res/docker/configuration.toml as an example). 

Inventory of EdgeX Secrets 
This section includes known and forecast secrets employed by EdgeX. 

• Database secrets (username/password) to get access to MongoDB used by core data, metadata, 

scheduler, notifications, logging, export client and other services that need to store or retrieve 

data from the persistence store.  Redis, today, operates without security access and assumes 

the database is inaccessible behind the firewall of the application 

• Export service (client and distribution) tokens, usernames/passwords to send data to secure 

endpoints such as Azure IoT, Google IoT Core, a secure HTTPS endpoint, a secure MQTTS topic, 

etc.  In the future, it is presumed that application services will need something similar. 

• In the future, it is anticipated that some device services may need to make a secure connection 

with their associated devices.  Such is the case with some BACNet communications.  In this case, 

device services may also require tokens, usernames/passwords, etc. to be securely store. 

Secret Storage Architecture 
This section covers the general design of how the secret store is setup, how its credentials are made 

available to the other EdgeX micro services and how the other services are able to access the secrets 

given the credentials.  The numbered steps below correspond to the steps in the accompanying 

diagram.  Details for each step are provided later in this document. 

1. The secret store is seeded by an initialization program.  This program will create different 

scopes/namespace for the different EdgeX micro services (see the Organization of Secrets 

https://github.com/edgexfoundry/developer-scripts/blob/master/init_mongo.js
https://github.com/edgexfoundry/developer-scripts/blob/master/init_mongo.js
https://github.com/edgexfoundry/edgex-go/blob/master/cmd/core-data/res/docker/configuration.toml
https://github.com/edgexfoundry/edgex-go/blob/master/cmd/core-data/res/docker/configuration.toml


section for more details on this organization).  It will also populate the credentials and sensitive 

data for each micro service – storing the data into the appropriate namespace for each service. 

The namespaces will be separated and protected by configurable policies and an ACL that are 

back by Vault and implemented in the format of HCL or JSON. 

2. A program (this could be the same initialization program for #1) stores the secret store access 

token in a file on the file system (or shared volume when using containers).  So that it can be 

used by the initialization programs and micro services later (see 4.1 below). 

3. The secret store (Vault) offers a REST API interface that allows micro services or other 

initialization programs to get secrets from the secret store with an understanding of the 

applicable namespace and the access token.  The namespace is used as part of the REST call 

URLs to access the appropriate secret from the store.  The namespaces for available secrets for 

each service is shared with each service (or initialization program) via configuration. 

4. When an EdgeX micro service (or initialization script) needs to obtain a credential from the 

secret store, it needs to perform following steps: 

4.1 Get the access token from file system or volume 

4.2 Get the applicable namespace for the credential  

4.3 Make a REST call to the secret store using the appropriate URL derived from the 

namespace for the credential along with access token to retrieve the credential. 

 

Vault Initialization 
The secret store init script (currently written in Go) will be modified to create namespaces for each 

individual microservice as well as create secrets/credentials used by each service and store them in the 

namespace. Notably, this includes the creation of the username/password pairs for MongoDB (or 

another database like Redis). 

The namespaces will be defined by configuration to the script.  The script will be modified to take 

command line arguments to specify the needed secrets. The secrets can be passed as environment 

Vault 
Initialization

Vault 
Master 
Token

Namespace 
descriptions

Vault
Service secrets organized by 

namespace

Initialization 
Script or Service1

2

3

4.3

4.1

4.2



variables, or command line parameters when the init script starts up. For security enhancement, GUIDs 

or random strings can be generated within the init script and stored into their individual Vault 

namespaces without leaving the scope of Vault.  

If the credentials need to be updated the a separated secret store UI such as command line or REST API 

calls can be used. 

Vault Master Token File Protection 
Today, the Vault master token is stored, without protection, in the file system (or shared volume when 

containerized).  In the future, eventually this file needs to be protected with some hardware protection 

implementation like TPM, TEE, etc.  The security services for Edinburgh will document this as a 

vulnerability and recommend the end user otherwise secure this secret. 

Organization of Secrets (Namespaces) 
The credentials and sensitive data will be organized in the secret store by EdgeX micro service. A 

different namespace path will be used for each micro service.  In general, credentials will be organized 

under a namespace of v1/secret/edgex/:path where path is a string that represents the individual micro 

service. For database initialization, specifically Mongo, the initial username/password pair would be 

accessed through the path of v1/secret/edgex/mongodbinit, and a REST API request of the secret store 

would return JSON like this: 

{ 
“auth”: null, 
“data”: { 

“initusername”: “user”, 
“initpasswd”: “passwd” 

}, 
“lease_duration”: 3600, 
“lease_id”: “”, 
“renewable”: false    

} 
 

Where “auth” specifies the authentication method for the specific namespace and “lease_duration” 

specifies how long the will the data last in second.  

As additional examples, core secrets (if it has any) would be in v1/secret/edgex/coredata and a modbus 

device service secrets (if any) would be in v1/secret/edgex/devicemodbus. Assuming core data needs 

credentials like username/password pair to access core data MongoDB, and need a GUID to identify 

itself when sending data to another microservice, an HTTP request to {SECRET-STORE-

IP}:8200/v1/secret/edgex/coredata will be given response something like this: 

{ 
“auth”: null, 
“data”: { 

“mongousername”: “user”, 
“mongopasswd”: “passwd”, 
“guid”: ”xxxxxxxxx-xxxxxxxx-xxxxxxxx” 



}, 
“lease_duration”: 3600, 
“lease_id”: “”, 
“renewable”: false    

} 
 
Vault provides the means to generate “password” tokens.  In order to avoid having to put pre-arranged 

password secrets in some other config or open file to be used by the initialization program, the 

initialization program will generate passwords to be store in Vault where required. 

Categories of Access Levels 
Ideally, and in future releases, the access for each service will be different so that access control and 

policies can be enforced per service. In the Edinburgh release, we will not distinguish the roles and 

provide each service with access to master token stored in the file system or volume that is accessed 

equally by all micro services. Today, all secrets stored and access in secure storage assume the same 

level of access.   

In the future, the following categories of access are projected (with the example of mongodbinit). 

path "v1/secret/edgex/mongodbinit " { 

  capabilities = ["create", "read", "update", "delete", "list"] 

} 

The capabilities will be associated with the access tokens that a client microservice uses to access the 

credential. A request to the secret will be granted or denied based on the capabilities.  

 

Database Initialization 
Mongo initialization is a standalone program and service that creates the MongoDB data structures (and 
access) for EdgeX micro services (https://github.com/edgexfoundry/docker-edgex-mongo ). Similar 
initialization scripts and services may exist for other database implementations (such as Redis).  When 
the database initialization program executes, it requires an initial access username/password pair to 
create the database instance.  It may, as in the case of MongoDB, also create several collections or 
structures each requiring other username/password pairs.  Typically, there is a separate (and uniquely 
protected) collection for each EdgeX micro service (such as a collection for coredata, metadata etc.).  
Currently the initial username/password as well as username/password pairs for micro services are 
saved in plaintext format in the initialization script. Under the new architecture, the database 
initialization script will query the secret store to obtain the credentials and use them to perform 
initialization. 

 

https://github.com/edgexfoundry/docker-edgex-mongo


 
The existing MongoDB initialization program is implemented using JavaScript (mongo_init.js).  For 
Edinburgh, a bash script will get the master token file, use the master token to get the appropriate 
username/password pairs and the call on a revised initialization script with the pairs to initialize the 
database and all appropriate collections.  In other words, a bash script will perform operations 4.1-4.3 
above for retrieving all database username/password pairs and then call to execute the initialization 
JavaScript with the username/password pairs. 
 

 
 
 
 
The cleanup script (and any other MongoDB script) will also have to be modified in a similar fashion as it 

also requires access to the database via username/password. 

Micro Service Secrets Retrieval (in Go) 
Any credential that is kept in configuration file or other plaintext format currently needs to be moved to 

secret store, and a code module needs to be created and made available to all micro services needing to 

retrieve credentials/secrets. The general steps for the Go module will be similar to what is described in 

the step 4 of “Secret Store Architecture” previously, which is  

bash Script

4.3

4.1

4.2

Mongo 
init script

Vault 
Initialization

Vault 
Master 
Token

Namespace 
descriptions

Vault
Service secrets organized by 

namespace

bash script

1

2

3

4.3

4.1

4.2

Mongo 
init script

MongoDB



- get the access token to secret store 

- obtain REST API path for the credential 

- REST calls to API endpoint to retrieve the credential with access token 

Edinburgh Security Work Outlined 
To add the features outlined in this document to at least secure the database secrets 

(username/password pairs) for all consuming micro services, the following tasks will need to be 

completed:  

1. Modify the secret store service initialization (implemented in Golang) to create the 

initial namespaces and credentials for Mongo.  

2. Modify the secret store service initialization to store the master token to a configuration 

defined file location to the file system or shared volume.  

3. Define the secret namespaces and share the namespace definitions with the individual 

consuming micro service or init scripts. This can be either specified in a configuration file 

or within Consul (as with other configuration, it should be done by Consul when 

available or configuration file when Consul is not available).  

4. Create a bash script to fetch the master token and access the secret store to fetch the 

database username/password pairs, and then call the existing database (Mongo) 

initialization script to properly initialize the databases and their associated collections. 

5. Create a “client” Go module to fetch the master token file, get secret namespace 

information from configuration and access secrets (in particular the database 

username/password pairs) from the secret store using the token and namespace.  The 

module will serve as a template for other language libraries in the future to access the 

secret store in the same fashion. 


