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Introduction 
This document is a revamp of EdgeX Hardware-based Secure Storage Design with the specific 
aim of protecting the Vault Master Key that underlies the EdgeX Secret Store. This document 
does not seek to standardize an interface to hardware secret storage, but rather creates an 
extension point that allows for EdgeX to retrieve an encryption key from the platform via a 
software- or hardware-defined mechanism, and use that key to secure Vault. 

Overview 
The EdgeX platform contains (or will contain) many secrets such as database credentials, 
various encryption/signature keys, X.509 certificates, authentication tokens, 
username/password pairs, Oauth client credentials, IOT cloud platform credentials/keys (e.g., 
AWS IOT keys).  EdgeX has chosen to use HashiCorp Vault for managing secrets. Currently, 
several of these “initial” secrets are stored on the file system in the clear. The goal is to enable 
protection of these initial secrets in a portable way that can be extended to hardware-backed 
implementations. 
 
The EdgeX platform is intended for use on multiple hardware platforms.  These platforms 
include Intel, ARM64 and ARM32. Within these platforms, there are different technologies to 
solve hardware-based trust, storage and related problems.  

Current State (Delhi and Edinburgh) 
 

 
 
The initial startup flow for secret management in Deli and Edinburgh is as follows: 

1. A utility, security-secret-setup, is run that generates a certificate authority and TLS 
end-entity certificates for Vault and Kong.  (These are unencrypted.) 

2. Vault is started with the generated PKI 

https://docs.google.com/document/d/1MsTNdwtZp3zA-nPhCC3COakL3e5mrhJuFByy6ja5OxU/edit#
https://www.vaultproject.io/


3. A vault-worker service is started that performs the following actions: 
a. Initialize Vault and store the initialization response which includes a Vault Master 

Key (VMK) as well as a Vault root token into the file system.  (Alternatively, if the 
VMK already exists, use to to unseal the Vault.).  The VMK is also unencrypted. 

b. Import the Kong certificate and place it into Vault 
c. Configure Vault policies and generate additional non-root tokens used by other 

services to access Vault. 
4. After Vault setup is completed, Kong and PostgresDB are started and configured.  As 

Kong starts, it requires a TLS certificate and its corresponding private key (as noted 
above) for the admin API.  If they don’t exist in the configured location on the file system, 
Kong generates and installs a cert and places it in the expected path on the file system. 

5. The Edgex Proxy service configures Kong.  As part of this configuration, the root token 
for Vault is retrieved from the file system and used to call Vault to retrieve and install the 
Kong external cert. 

A Quick Vault Overview 
Vault is a software based secret management service.  Vault supports a number of pluggable 
“secrets” engines that provide, among other functionality: 

● Secrets storage – encrypted key/value pairs with secure key access, wrapping and 
management included (rotations, TTL, usage frequency, etc.) 

● Provisioning of database usernames and passwords 
● Encryption as a service 
● Generation of OIDC-connect compliant OAuth tokens 
● Generation of public/private key hierarchies 

 
While EdgeX by default runs a single Vault (and Consul for that matter) server, Vault also has 
the ability to run in a fault tolerant mode in conjunction with Consul.  In this mode multiple vault 
servers and multiple consul servers are run simultaneously. 
 
In EdgeX, Vault will initially be used for secrets storage.   Eventually, almost (more on this in the 
next section) all EdgeX secrets will be stored in Vault including: 

● Certificates 
● Database credentials 
● Cloud/IOT Platform credentials 
● Encryption/Signature keys 

 
There are several constraints / limitations to how Vault can be used in EdgeX: 

● Vault pre-assumes a PKI has been deployed and that the private key for the TLS 
end-entity certificate is available in plaintext; Vault cannot easily self-seed its own PKI. 

● The Vault master key is generated by Vault itself. This means we can’t “give” Vault the 
encryption key that we want it to use. Instead, we must take the key that Vault gives us 
and store it securely. 



● The preferred configuration for Vault is to have the Vault on physically separate 
hardware that only runs Vault. As an IoT framework, EdgeX must be able to work when 
all components are located on a single processing node. 

● The preferred configuration for Vault is that the Vault is manually unsealed by human 
operators. As an IoT framework, EdgeX must be able to unseal the Vault when no 
human is present. 

● Although Vault has an enterprise version that has a PKCS#11 seal plugin, EdgeX 
desires to provide a solution to protect the Vault master key that does not depend on 
enterprise features and has a reasonable software fallback. 

 

Initial List of Assets and Proposed Disposition 
 

Asset Proposed Disposition 

TLS CA private key Unique per device. Shred and dispose after 
TLS end-entity certificate generation is 
complete (*1) 

TLS Vault end-entity private key Unique per device. Leave unencrypted for 
Fuji; encrypt at-rest in future release 

TLS Vault end-entity private key Unique per device. Leave unencrypted for 
Fuji; encrypt at-rest in future release 

Vault master key Encrypt according to this proposal 

Vault root token Revoke (recreate from VMK if needed) 

Non-root tokens Revoke all previous tokens from previous 
runs and re-issue at startup. (*2) 

 
(*1) In the future, Vault can be enabled as a delegated certificate authority with the ability to 
generate additional certificates at runtime for other needs, such as service-to-service encryption 
and authentication. 
(*2) This ensures that at startup every service has a fresh valid token and also addresses 
potential disk usage issues due to token leakage. 

Usage of Secrets 
Initial secrets are only retrieved at start time (both initial and subsequent).  This will include, in 
the future, any individual service that stores secrets in Vault.  Anytime a service starts, it must 
be able to retrieve/store secrets from Vault using a valid token.  Therefore, any Vault-consuming 
service must have a vault token at startup time. Non-root tokens have a Time to Live (TTL) 



barrier that implies a service to handle the refresh process, TTL cycles are also limited. These 
features cannot be disabled by Vault configuration, therefore have to be automated within the 
future usage procedures. 

Future State 

 

Hardware based Encryption 
Cryptographic services are a requirement of the Basic Endpoint Security Level as defined by the 
Industrial Internet Consortium.  The IIC Endpoint Security Best Practices document also refers 
to other industry security standard documents such as IEC 62443-33 and NIST-800-53r5. 
Hardware Based encryption is an important part of meeting these standards. Toward that end, 
EdgeX will enable hardware based secure storage utilizing hardware based encryption. 
Although not recommended, EdgeX may also be run without hardware based secure storage. 
There are multiple existing systems for Hardware based encryption with the most widely used 
being: 
 

● TPM – The Trusted Platform Module 2.0 specification is provided by the Trusted 
Computing Group. 

o TPM boards can be manufactured by 3rd party vendors for inclusion on a system 
board.  A list can be found here. Or the TPM can be manufactured and included 
on the system board by the same vendor such as Intel. 

● TEE – Trusted Execution Environment – An implementation that provides a secure 
enclave or secure OS to execute trusted code in isolation from user space within the 
CPU. 

o ARM TrustZone is an architecture of the Hardware layer to support this 
implementation. TrustZone introduced a special CPU mode called “secure mode” 

https://www.iiconsortium.org/pdf/Endpoint_Security_Best_Practices_Final_Mar_2018.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/membership/certification/tpm-certified-products/
https://www.arm.com/why-arm/technologies/trustzone-for-cortex-a


in addition to the regular normal mode, the architecture includes the SoC and 
peripherals that are connected with the SoC. 

 
While the architectures differ significantly, the general principle is essentially the same. Both 
implementations have different ways to perform encryption, hashing, key generation and key 
storage functions.  They also differ in cryptographic inputs like randomness and entropy. Storing 
a key in hardware provides yet another layer of security over software-based solutions.  Simply 
having access to the filesystem does not provide an attacker an avenue for successfully 
decrypting data. Although some TEE implementations can provide slices of the filesystem which 
are themselves isolated and blinded from user space. These zones need supplemental TEE 
security mechanisms like monotonic clock to avoid alterations on replay and downgrade attacks.  
 
Note: These types of systems frequently have small CPU and small storage capacities.  As 
such, they are meant to be used for encryption and storage of small amounts of data on an 
infrequent basis. 
 
This document is not intended to be a full explanation of hardware based encryption systems. 
 

Proposal for Vault Master Key protection in EdgeX 
This document proposes to protect the Vault master key by introducing a RFC-5869 key 
derivation function (KDF) to produce a wrapping key that will be used by the vault-worker 
process to encrypt the Vault master key. 
 

 
 
 

https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869


 
 
An RFC-5869 KDF requires three inputs.  A change to any input results in a different output key: 

● Input keying material (IKM).  It need not be cryptographically strong, but it is the “secret” 
part of the KDF. 

● A salt.  A non-secret random number that adds significantly to the strength of the KDF. 
● An “info” argument.  The info argument allows multiple keys to be generated from the 

same IKM and salt.  This allows the same KDF to generate multiple keys each used for a 
different purpose.  For instance, the same KDF can be used to generate an encryption 
key to protect the PKI at-rest. 

 
The advantage of the KDF-based solution is that the IKM need not be stored in the file system. 
For example: 

● It could be externally supplied by some management node on the network that has the 
ability to attest the device. 

● It could be stored in NVRAM on a TPM or an HSM. 
● It could be a random value that is sealed cryptographically to a TPM or HSM or TEE and 

released by local or remote attestation. 
 
In the proposed design, the “vault-worker” component that initializes and unseals the secret 
store takes the IKM from a pipe.  This IKM is provided by a vendor-defined mechanism. 
 

 
 
To further strengthen the solution, an implementation can choose to engineer a solution 
whereby the IKM is only released a configurable number of times per boot, so that malware that 
runs on the system post-boot cannot retrieve it: 

● A kernel driver could set a counter in the kernel preventing re-release of the IKM. 
● A TPM implementation could extend a PCR once the IKM had been retrieved preventing 

further retrieval of the IKM in the current boot or block a certain NVRAM index from 
being re-read. 

https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869


IKM API Specification 
As part of unsealing the secret store, an optional binary will be invoked that is expected to 
provide the IKM for the KDF: 
 
 

 

IKM(1) Input key material for KDF IKM(1) 

 

NAME 

ikm - Return input key material for a hash-based KDF. 

 

SYNOPSIS 

ikm 

 

DESCRIPTION 

ikm outputs initial keying material to stdout as a lowercase 

hex string to be used for the default EdgeX software 

implementation of an RFC-5869 KDF. 

 

The ikm can output any number of octets. Typically, the KDF 

will pad the ikm if it is shorter than hashlen, and hash the 

ikm if it is longer than hashlen. Thus, if ikm returns 

variable-length output it is advantageous to ensure that the 

output is always greater than hashlen, where hashlen depends on 

the hash function used by the KDF. 

 

NOTES 

If ikm is a shell script, it may be useful to filter the output 

through "xxd -p" 

The default ikm provided by EdgeX returns an IKM of 32 octets 

of zeroes. 

 

EXAMPLE 

ikm 

3cb25f25faacd5 

 

SEE ALSO 

kdf(1) 

 

IKM(1) Input key material for KDF IKM(1) 

 



 

 

Changes to Vault Worker 
The existing vault worker initializes Vault and stores the initialization response (resp-init.json) to 
a persistent docker volume.  The following are the proposed changes to the vault worker: 
 

● Generate a random salt value using golang crypto random function and save/load it from 
the persistent docker volume. 

● Invoke the $IKM_HOOK and capture the resulting encryption key. 
● Encrypt or decrypt the keyshare using AES-256-GCM using the derived key and 

generated random salt and store the encrypted keyshare in the persistent docker 
volume. 

 

Hardware extensibility mechanisms 
This section documents how the proposed Vault key protection mechanism could be extended 
to hardware-based protection mechanisms. 

Extensibility to software enclaves 
Using a software enclave, the entire KDF computation can be placed inside of an enclave that is 
bound to hardware.  Both the IKM and salt can be generated by using a HWRNG and the entire 
enclave state can be unique per-machine and sealed per-machine. 
 

Extensibility to PKCS#11-compliant HSMs 
Using a PKCS#11 interface, it should be possible to: 

● Generate a random number to serve as IKM to the KDF 
● Generate a new key persistently stored in the HSM 
● Use the persistent key to encrypt or decrypt the IKM at rest 

 

Extensibility to TPM’s 
It is possible to use a TPM as a PKCS#11 device using a library such as tpm2-pkcs11.  It would 
also be possible to write to a native TPM interface and 

● Generate a TPM primary object in the owner hierarchy and store in the TPM NVRAM 
● Generate a random number to server as IKM to the KDF, seal it to the TPM, and store 

the sealed object in the TPM NVRAM 
● Store the KDF seed in TPM NVRAM as well. 
● Require PCR-based authorization policy to retrieve the IKM. 



● Optionally lock the TPM NVRAM from reading the secret another time, or extend a PCR 
that prevents re-reading the secret. 

 


