

Core Working Group Agenda (01-Nov-2018)

Attendees:

Old Business

• It’s all new business, baby!

New Business

• Developers responsible for blackbox-testing changes
o Integration test ownership
o Indicated by

§ Changes to the API signatures, reflected in the RAML
§ Non-equivalent functional change to existing endpoint

o General agreement from attendees
§ Jeremy raised CI concerns
§ PR à verify job à If pass, merge & test is triggered. If test fails, then

issue is created for PR creator.
• Can integration run as part of the PR pipeline and merge not occur

until test passes?
• Can devs run blackbox tests locally before creating a PR?

o Documentation
§ Blackbox PR à docs folder containing the Postman/Newman PDFs

(Trevor)
§ Record a walkthrough of local blackbox testing procedure (Trevor / Andy)

o Question: should we consolidate code/test repos?
§ General agreement, will be easier to coordinate and ensure feature

complete.
• If scope indicates need for test changes, inclusion in code repo will

make it obvious whether tests were changed or not.
o Test coupling to Mongo

§ Discussed rework of tests to reduce reliance on pre-seeded data that
might have coupling to particular platform.

• Proposal to have the test script auto-gen IDs where necessary,
perhaps based on an environment variable setting.

• Discussed IDs versus Keys as part of data seeding for tests
o Should IDs even be exposed.

• Structured Logging
o GoKit Logger

§ DEMO
o No objections on the call.

• Go modules
o First steps

§ Devs upgrade to Go v1.11.1

§ CI jobs updated to use same
• Dockerfiles need to use new base image
• What about SNAPs?

o Single line change in Snapcraft.yaml file
• This is being discussed in the weekly DevOps calls

o Repos can now live outside of the GOPATH
§ Repos within GOPATH that have been converted to modules must be

compiled used GO111MODULE=on
• Should be easily accomplished in both

WILL COVER ITEMS BELOW NEXT WEEK. RAN OUT OF TIME.

• Database Abstraction, remove Mongo types
o Discuss exposure of db generated keys outside of service boundary
o Keys versus UUID in usage

§ Key, represented as string – value is DB specific, cast by provider
• Mongo compatibility

§ UUID is a standardized unique identifier
• Could potentially be supplied by upstream application, not

database.
o Go libraries for UUID generation

§ https://github.com/google/uuid
§ https://github.com/satori/go.uuid
§ https://github.com/nu7hatch/gouuid (OLD)

Supplemental notes

• DB à Business Layer ID representation
o Answer question à UUID equivalency w/BSON ID
o If not equivalent

§ Key (string type) DB PK value
§ UUID àstd library type

• Modify query paths accordingly
• Indexing in Mongo for lookups

UniqueIdentifier (GUID) **

Key (BSON) – DB Key ** may not want this exposed **

Both will be strings as raw data types

"created":

1464039917100,
 "modified": 1474774741088,
 "origin": 1471806386919,
 "pushed": 1471806399999,
 "device": "powerScoutMeter",

“uuid” : “my_uuid”

