

Core Working Group Agenda (14-June-2018)

Attendees:

Old Business

 Janko asked that we revisit “glide” replacement w/”dep”

o History on this – PR #256 (https://github.com/edgexfoundry/edgex-go/pull/256)

o Vgo to be official in 1.12

 https://research.swtch.com/vgo-accepted

o If schedule holds, will be Feb 2019 (https://golang.org/doc/devel/release.html)

o Discussion centered on what particular issue dep would solve as opposed to

glide. Timing of switch, possible to consider move to dep if vgo gets moved out.

 Or possibly evaluate other tools

o For now, leave as is.

 Add glide.lock as part of California branch to ensure versioning and consistent builds

o Jim, Jeremy and Trevor

https://github.com/edgexfoundry/edgex-go/pull/256
https://research.swtch.com/vgo-accepted
https://golang.org/doc/devel/release.html

New Business

 Readiness of export connectors (Janko / Mainflux)

o New contributions being reviewed

 https://github.com/edgexfoundry/edgex-go/pull/297

o For California? QA?

o Needs more testing / verification – Andy / Keith?

 Requesting tools / accounts for public cloud vendors to enable testing

 Approval has been obtained from the Board.

o Platforms

 Google Iot

 Azure Iot

 Janko to make full list and submit to Keith

 Code Quality Pipeline

o For example: https://medium.com/@jgautheron/quality-pipeline-for-go-

projects-497e34d6567

o Suggested tools include

 SonarQube

 CodeClimate

 Coverity (Keith)

o Minimal desired functionality?

 Configurable rules, clear reporting, integration with source control and

CI/CD.

o Clarify pricing – run in CI/CD vs per seat. Latter isn’t really doable.

o Ensure code quality tools run when the PR is created

 Add as required check before PR can be approved.

o Concern about devs not being able to run checks locally before submitting PRs

o Tools should support multi-language

o Does LF have a recommendation based on other projects?

 Identify key Go-based projects and do a survey (Brett / Jeremy)

 Structured Log Format

o EdgeX already imports uber-go/zap

 https://github.com/uber-go/zap

 Used by export services

o Need to decide on format of the message – fields and values

o Logs to file system by default

 How do we route to support-logging?

 Performance impact of same.

o Can log level be configurable while application is running?

 https://godoc.org/go.uber.org/zap#AtomicLevel.ServeHTTP

o Do we need to consider an output formatter?

https://medium.com/@jgautheron/quality-pipeline-for-go-projects-497e34d6567
https://medium.com/@jgautheron/quality-pipeline-for-go-projects-497e34d6567
https://www.sonarqube.org/
https://codeclimate.com/
https://github.com/uber-go/zap
https://godoc.org/go.uber.org/zap%23AtomicLevel.ServeHTTP

 JSON

 Delimited String

 Custom

o Need to flesh out

 Eric / Trevor – Document need and criteria (possibly targeting distributed

environment)

 Tony – Document need and criteria (targeting smaller, constrained

environment)

 How do we implement a solution that works in both of these domains?

 Rodney to follow up with more info based on known solutions

 Future items of discussion include

o Tracing capabilities

o Alternates to JSON serialization

 (Jim) Move up in priority due to Hitachi deadline

 (Tony) Probably need an event schema change to support byte array

(Reading specifically)

o Replace RAML with Swagger

 Ask Hitachi for assistance with conversion

 No decision yet on moving to Swagger, hoping for the above.

o (Keith) Restart discussion on UUIDs

 Perhaps dependent on Mongo replacement

