

Core Working Group Agenda (14-June-2018)

Attendees:

Old Business

 Janko asked that we revisit “glide” replacement w/”dep”

o History on this – PR #256 (https://github.com/edgexfoundry/edgex-go/pull/256)

o Vgo to be official in 1.12

 https://research.swtch.com/vgo-accepted

o If schedule holds, will be Feb 2019 (https://golang.org/doc/devel/release.html)

o Discussion centered on what particular issue dep would solve as opposed to

glide. Timing of switch, possible to consider move to dep if vgo gets moved out.

 Or possibly evaluate other tools

o For now, leave as is.

 Add glide.lock as part of California branch to ensure versioning and consistent builds

o Jim, Jeremy and Trevor

https://github.com/edgexfoundry/edgex-go/pull/256
https://research.swtch.com/vgo-accepted
https://golang.org/doc/devel/release.html

New Business

 Readiness of export connectors (Janko / Mainflux)

o New contributions being reviewed

 https://github.com/edgexfoundry/edgex-go/pull/297

o For California? QA?

o Needs more testing / verification – Andy / Keith?

 Requesting tools / accounts for public cloud vendors to enable testing

 Approval has been obtained from the Board.

o Platforms

 Google Iot

 Azure Iot

 Janko to make full list and submit to Keith

 Code Quality Pipeline

o For example: https://medium.com/@jgautheron/quality-pipeline-for-go-

projects-497e34d6567

o Suggested tools include

 SonarQube

 CodeClimate

 Coverity (Keith)

o Minimal desired functionality?

 Configurable rules, clear reporting, integration with source control and

CI/CD.

o Clarify pricing – run in CI/CD vs per seat. Latter isn’t really doable.

o Ensure code quality tools run when the PR is created

 Add as required check before PR can be approved.

o Concern about devs not being able to run checks locally before submitting PRs

o Tools should support multi-language

o Does LF have a recommendation based on other projects?

 Identify key Go-based projects and do a survey (Brett / Jeremy)

 Structured Log Format

o EdgeX already imports uber-go/zap

 https://github.com/uber-go/zap

 Used by export services

o Need to decide on format of the message – fields and values

o Logs to file system by default

 How do we route to support-logging?

 Performance impact of same.

o Can log level be configurable while application is running?

 https://godoc.org/go.uber.org/zap#AtomicLevel.ServeHTTP

o Do we need to consider an output formatter?

https://medium.com/@jgautheron/quality-pipeline-for-go-projects-497e34d6567
https://medium.com/@jgautheron/quality-pipeline-for-go-projects-497e34d6567
https://www.sonarqube.org/
https://codeclimate.com/
https://github.com/uber-go/zap
https://godoc.org/go.uber.org/zap%23AtomicLevel.ServeHTTP

 JSON

 Delimited String

 Custom

o Need to flesh out

 Eric / Trevor – Document need and criteria (possibly targeting distributed

environment)

 Tony – Document need and criteria (targeting smaller, constrained

environment)

 How do we implement a solution that works in both of these domains?

 Rodney to follow up with more info based on known solutions

 Future items of discussion include

o Tracing capabilities

o Alternates to JSON serialization

 (Jim) Move up in priority due to Hitachi deadline

 (Tony) Probably need an event schema change to support byte array

(Reading specifically)

o Replace RAML with Swagger

 Ask Hitachi for assistance with conversion

 No decision yet on moving to Swagger, hoping for the above.

o (Keith) Restart discussion on UUIDs

 Perhaps dependent on Mongo replacement

