
Geneva API Requests/
Responses

API Definition Principles for Specificity and Longevity

History of v1.x API
• Types marshaled as requests/responses were identical with internal

representations of state in EdgeX Foundry services

• These types were defined in the edgex-go repo along with the service
implementations

• For Edinburgh release, we split these types into go-mod-core-
contracts. Benefits include

1.) Clients no longer have to import entirety of edgex-go

2.) State internal to edgex-go can vary from request/response
contracts (persistence model types, for example)

• However we still currently have some baggage

I Just Want to Add a Device
type Device struct {

Id string

Name string

LastConnected int64

…

Profile DeviceProfile

Service DeviceService

}

type DeviceService struct {

Id string

Name string

LastConnected int64

…

Addressable Addressable

}

type DeviceProfile struct {

Id string

Name string

DeviceResources []DeviceResource

DeviceCommands []ProfileResource

CoreCommands []Command

}

type DeviceResource struct {

Description string

Name string

…

Properties ProfileProperty

}

type ProfileProperty struct {

Value PropertyValue

Units Units

}

Populate ALL of this stuff and
then make sure the recursive
type validations don’t fail. …you get the idea…

Well Now You Can! ☺

• Specific request type to add device
• Flattened as much as possible
• Where nested types exist, they are
part of the device definition itself and do
not refer to other primary types
• Refer to other primary types by an
identifier (in this case “Name”)
• Validation of the request is still
Encapsulated within the specific type, as
we do today.

Looking toward a v2.x API

• We do not want to go through a v3.x exercise 12 months from now

• We need basic principles we can use to define a new API
• Learn from the past

• Allow for extensibility

• Preference for defining specification before implementation
• Underway using OpenAPI 3.x specification (this is Swagger now)

Geneva API Guidelines Proposal (Requests)

• Request definition guidelines
• GET/DELETE – The URL is the request. No additional type is needed

• POST – This is an “ADD” operation. The request type should be named
accordingly (e.g. AddDeviceRequest)

• PUT – This is an “UPDATE” operation. The request type should be named
accordingly (e.g. UpdateDeviceRequest)
• This type provides the full state of the object being updated. Partial state updates each

have their own specific routes (see later slide)

• In provided example, this type tends to be identical to the respective Add request with
the addition of the object’s ID property.

• All request types must implement self-validation

Geneva API Guidelines Proposal (Responses)

• In the case where an API returns a body, the content must be a
marshaled type (JSON by default). No literal string return values.

• Response definition guidelines
• GET (single item) – Return the requested type (e.g. Device)

• If requested item is not found, return a 404

• GET (list) – Return an array of the requested types. MUST support pagination
via querystring parameters
• If no items were found, return an empty array (200 HTTP status code)

• DELETE – No content returned, 204 HTTP status code indicates success.
• POST

• If successful, return NewIdResponse type (e.g. provide the ID of newly inserted record)
• If unsuccessful, return ErrorResponse type

• PUT
• If successful, return SuccessResponse type
• If unsuccessful, return ErrorResponse type

Geneva API Guidelines Proposal (Routes)
• GET

• Retrieving an item by ID or Name requires unique endpoints for each. No dual-
purposing of routes.

• Retrieving a list of items MUST support pagination via querystring parameters.

• POST
• Only used for additions of new entities
• Route should identify that entity with no additional cruft

• E.g. “/api/v2/device”

• PUT
• Only used for updates
• If updating a specific property on an entity (like Device.LastReported) values specific

to the operation should be on the Request type, not the route
• /api/v2/device/lastreported
• Example request:

• {"id": "3fa85f64-5717-4562-b3fc-2c963f66afa6", "time": 123456789, "notify": true}

Geneva API Guidelines Proposal (Routes – cont’d)

• DELETE
• Deleting an item by ID or Name requires unique endpoints for each. No dual-

purposing of routes.

For Example

• I’ve tried to apply these principles to core-metadata

• https://github.com/tsconn23/edgex-geneva-api

https://github.com/tsconn23/edgex-geneva-api

