EdgeX Application Working Group 8/20/2019

Other Updates:

- TargetType is implemented to support custom types to be used between App Services
(no longer requiring an EdgeX Event)
- Environment Variables -

Summary of Store and Forward:

Data will be stored upon error on export functions (HTTPPost, MQTTSend) enabled by a
true/false flag “persistOnError”. The following breaks out areas that would be affected that are
exposed to the developer at a surface level. Internal workings are not detailed here (except the
db).

App Service

T

Scheduler

Questions/Opens:
Is batch needed? - Not for now, not related to store/forward - lets leave this on the table
as stretch goal.
Do we need a flush? - Push it off?
- QoS for Mqtt how does it related to MaxRetryCount - Need to determine
How do we handle orphaned data? -- Do we care? - Do we have a TTL?
Crawl - ignored
Walk - Storage Service to manage data
- Opens: How is scheduler updated with URLs? Synced with consul?
- MarkAsPushed - handling for multiple app services than ingest the same event (how to
know all successfully pushed) - same problem exists with export services
- Storage Service - discuss with TSC for Geneva?????
Assumptions:

- Data will be discarded if pipeline changes
- Data is removed after success
- Remove/ColumnName Changes to persistent store requires wipe?

New Initialization Parameters:
- RetryInterval (in minutes).
- 0 = Do Not Retry and will remove any schedules from scheduler
- >0 = Register this app service with scheduler
- MaxRetryCount
- 0= Keep Trying Forever (only deletes upon success)
- Threshold for when to remove the data from the db after so many retries
- Provide traceability for when data is removed (i.e. Logging)
New Endpoint Added:
- [api/v1/RetryPipeline
- Called by scheduler based on interval.
New Context Function:
- PersistPayload(payload []byte) - the function that will call the Create/Update dbPkg to
persist the data

SDK Functions to be Affected:
- HTTPPost(persistOnError=true/false)
- MQTTSend(persistOnError=true/false)

Database Implementation (Help Wanted):
- Leverage official mongo driver: https://github.com/mongodb/mongo-go-driver (License:
Apache 2.0)

DB: AppServices
CollectionName: RetryDataV1?
Columns:
- ID (uniqueld,guid) - unique identifier for this record
- AppServiceKey (string) - identifies the app service to which this data belongs
- Payload (byte[]) - the data to be exported (
- RetryCount (int) - how many times this has tried to be exported
- PipelinePosition (int) - where to pickup in the pipeline
- Version (string) - hash of the functions to know if the pipeline has changed
- Correlationld - from EdgeX to track this individual record as it moves

- Eventld/Checksum - in order to identify edgeX event from core and mark as pushed
CollectionName: SchemaVersion
Columns:
SDKVersion: schema

DB Pkg - ideally abstracted for implementation for Redis and Mongo

https://github.com/mongodb/mongo-go-driver

Create() - Store()

Retrieve() - RetrieveFromStore()
Update() - UpdateRetryCount()
Delete() - RemoveFromStore()

Example:

Filter
Compress - return value of this would be persisted
HttpPost

Topics from last time:

e Store & Forward Goals:
o When connectivity is lost
o Support Batch Mode and sending Data on a schedule
Proposal
e Leverage existing reference implementations MongoDB and Redis
o Probably best way to go to create its own connection and its own db
collection
o Can use same mongo instance or other - ensure isolated
e Add new parameter/option to Export functions (HTTPExport, MQTTSend) to
persist on error
o Persist on error would store event data to db on failed request
o Should we consider a timeout for data persisted for it to be aged out

e Add new function - Batch(count int) - to hold messages until count is reached
before outputting to next function
Provide /endpoint for scheduler to call in order to retry previously failed requests
Need to be clear with examples of how and when voluminous data versus
occasional data can be persisted or dropped
e When processing is picked up again, its done at the export point, not the
beginning of the pipeline
e Need identity of pipeline of that originated the data as well as where in the
pipeline it was.
o App Service Configurable - pipeline changes, what do you do with the
data if the stage in the pipeline no longer exists
Future consideration - Fork Pipeline based on conditions
Example pipeline 1 (Valuable occasional data):
o FilterByDeviceName()
o TransformToJSON

Batch(50)
CompressWithGZIP
HTTPPost(persist=true)
o MarkAsPushed - not called until connectivity is restored
e Example pipeline 2 (voluminous telemetry data drop it if we fail to send it out):
o FilterByDeviceName()
o TransformToJSON
o HTTPPost(persist=false)

o O O

e Feature Requests - Brad Corrion

