

EdgeX Application Working Group 9/3/2019

Topics for today:
● AWS Updates

○ Contact Mainflux for AWS & Azure account credentials for LF
● Store N’ Forward Updates

○ DB updates from Dell (Brandon)
■ Started - WIP

○ How is SNF integrated with CoreData - concern around having separate DBs -
CD is pipe for raw data events - Data Structure is different thus it can’t be in
same collection

■ Microservice architecture encourages separate db per service
● Not necessarily separate physical dbs - but separate collections or

logical DBs
● Goal is to eliminate hidden DB dependencies

■
● “Push to Core”

○ Intel use cases require this for Fuji
○ ValueDescriptor changes would affect this
○ Add a splitter to breakout readings from a single into multiple individual events

with a single reading
○ Messaging needs to be a topic at pre-f2f on the 9th​ - especially around

pub/sub
○ Annotate as Experimental - Not guaranteed to stay around
○ Ideas for a generic Restful service?

● Telemetry data - should this be a device service? What about a telegraf device service
that supports all the telegraf plugins?

● WebServer Exposure
○ Want to give developer ability to add their own endpoint.

■ Consequence: Developer would spin up their own - requiring a second
webserver be setup

■ Kong Implications?
○ sdk.AddEndpoint(‘/myendpoint’, myHandler, ‘GET’);
○

● Progress Updates

○ Combed Configuration to ensure proper usage
○ Error return on HTTP Trigger

● ZMQ - Separate bus - raw connection to bus - without wrapper
○ Need to include this for Fuji - Requirement from Industrial Team from Intel

● Any update from Mainflux about XMPP?
○ Lost in space - OK not to bring over

From Last Time:
Mainly Status Updates for today:

- Cloud Exports
- Azure - PR Merged! W00t!

https://github.com/edgexfoundry-holding/app-functions-azure
- AWS - Alex C.

- PR by Thursday
- Store and Forward

- Kickoff has begun, db layer has started - Thanks Brandon!
- Should mark as handled is stored?

- Not for crawl
- Need to extend mongo-init for the Store.
- Good with batch not for Fuji.

- Bug Fixes:
- Fixed a bunch of unused configuration values in the SDK (i.e. Timeout)

https://github.com/edgexfoundry-holding/app-functions-azure

Anbody know anything about XMPP?​ It exists in the export services, is this something we
want to copy over to the SDK? Do we have a pulse on any customers using it? Might be an
opportunity to leave behind, thoughts?

- Jim is somewhat familiar.
- Out of scope for now?
- Jim will ping Mainflux

“Push To Core” Request from #applications​ - Marcelo
Brad from Commerce Working Group, Internal Intel teams.
Could be implemented with something like:
PushToCore(deviceName string, valueDescriptorName string, value

interface{})

I think we have enough folks asking for this?

- Is this really needed for Fuji?
- Brad come to next week's meeting to discuss priority?

Opens?

From Last Time:

Other Updates:
- TargetType is implemented to support custom types to be used between App Services

(no longer requiring an EdgeX Event)
- Environment Variables -

Summary of Store and Forward:
Data will be stored upon error on export functions (HTTPPost, MQTTSend) enabled by a
true/false flag “persistOnError”. The following breaks out areas that would be affected that are
exposed to the developer at a surface level. Internal workings are not detailed here (except the

db).

Questions/Opens:

Is batch needed? - Not for now, not related to store/forward - lets leave this on the table
as stretch goal.

Do we need a flush? - Push it off?
- QoS for Mqtt how does it related to MaxRetryCount - Need to determine

How do we handle orphaned data? -- Do we care? - Do we have a TTL?
Crawl - ignored
Walk - Storage Service to manage data

- Opens: How is scheduler updated with URLs? Synced with consul?
- MarkAsPushed - handling for multiple app services than ingest the same event (how to

know ​all​ successfully pushed) - same problem exists with export services
- Storage Service - discuss with TSC for Geneva?????

Assumptions:
- Data will be discarded if pipeline changes
- Data is removed after success
- Remove/ColumnName Changes to persistent store requires wipe?

New Initialization Parameters:

- RetryInterval (in minutes).
- 0 = Do Not Retry and will remove any schedules from scheduler
- > 0 = Register this app service with scheduler

- MaxRetryCount
- 0 = Keep Trying Forever (only deletes upon success)
- Threshold for when to remove the data from the db after so many retries
- Provide traceability for when data is removed (i.e. Logging)

New Endpoint Added:
- /api/v1/RetryPipeline

- Called by scheduler based on interval.
New Context Function:

- PersistPayload(payload []byte) - the function that will call the Create/Update dbPkg to
persist the data

SDK Functions to be Affected:

- HTTPPost(persistOnError=true/false)
- MQTTSend(persistOnError=true/false)

Database Implementation (Help Wanted):

- Leverage official mongo driver: ​https://github.com/mongodb/mongo-go-driver​ (License:
Apache 2.0)

DB: AppServices
CollectionName: RetryDataV1?
Columns:

- ID (uniqueId,guid) - unique identifier for this record
- AppServiceKey (string) - identifies the app service to which this data belongs
- Payload (byte[]) - the data to be exported (
- RetryCount (int) - how many times this has tried to be exported
- PipelinePosition (int) - where to pickup in the pipeline
- Version (string) - hash of the functions to know if the pipeline has changed
- CorrelationId - from EdgeX to track this individual record as it moves
- EventId/Checksum - in order to identify edgeX event from core and mark as pushed

CollectionName: SchemaVersion
Columns:

SDKVersion: schema

DB Pkg - ideally abstracted for implementation for Redis and Mongo

Create() - Store()
Retrieve() - RetrieveFromStore()
Update() - UpdateRetryCount()
Delete() - RemoveFromStore()

Example:
Filter
Compress - return value of this would be persisted
HttpPost

Topics from last time:

● Store & Forward Goals:

https://github.com/mongodb/mongo-go-driver

○ When connectivity is lost
○ Support Batch Mode and sending Data on a schedule

Proposal
● Leverage existing reference implementations MongoDB and Redis

○ Probably best way to go to create its own connection and its own db
collection

○ Can use same mongo instance or other - ensure isolated
● Add new parameter/option to Export functions (HTTPExport, MQTTSend) to

persist on error
○ Persist on error would store event data to db on failed request
○ Should we consider a timeout for data persisted for it to be aged out

● Add new function - Batch(count int) - to hold messages until count is reached

before outputting to next function
● Provide /endpoint for scheduler to call in order to retry previously failed requests
● Need to be clear with examples of how and when voluminous data versus

occasional data can be persisted or dropped
● When processing is picked up again, its done at the export point, not the

beginning of the pipeline
● Need identity of pipeline of that originated the data as well as where in the

pipeline it was.
○ App Service Configurable - pipeline changes, what do you do with the

data if the stage in the pipeline no longer exists
● Future consideration - Fork Pipeline based on conditions
● Example pipeline 1 (Valuable occasional data):

○ FilterByDeviceName()
○ TransformToJSON
○ Batch(50)
○ CompressWithGZIP
○ HTTPPost(persist=​true​)
○ MarkAsPushed - not called until connectivity is restored

● Example pipeline 2 (voluminous telemetry data drop it if we fail to send it out):
○ FilterByDeviceName()
○ TransformToJSON
○ HTTPPost(persist=​false​)

● Feature Requests - Brad Corrion

