
System Management high-level API (re-)design
Jim White

Version 4

Updated: 2/24/19

At a system management work group meeting on 11/13/18, it was decided that our management

facility needed to be able to start/stop/restart EdgeX micro services through a call to either

• Docker Compose

• or some outside, undefined executable app that adheres to a defined API

It was further decided in a 1/8/19 meeting of the same work group, that the Docker Compose

need could be handled by just having an executable app that makes the Docker Compose calls –

thus preserving a common pattern for all start/stop/restart functionality.

The executable applications that the system management agent (SMA) micro service calls on are

referred to as the “executors” of the start, stop, and restart functionality. How the executor

performs its duties is left for the implementor and is generally dictated by the available operating

system, platform environment (existence and use of Docker for example) and associated

programming language resources.

EdgeX will supply at least two executors for demonstration purposes.

• An executor that uses Docker Compose calls to facilitate start, stop and restart

functionality (the reference implementation)

• An executor that uses a Linux shell script that start services and a find (using Linux

process status: ps -ax) and kill process by PID means to stop the services. This executor

is obviously tied to Linux environments.

The executor design allows use of other orchestrating software (example: Kubernetes or Swarm),

scripts, OS specific technology (snaps or sysd), etc. to be used without having to build anything

into the SMA – allowing for a more scalable solution in EdgeX but still allowing use of all sorts

of implementation technology outside of EdgeX.

The SMA will be informed of what executor to use for start/stop/restart functionality through a

configuration option – appPath. The appPath will specify the location (which may be platform

dependent) and executable to be called to start, stop or restart. The SMA will make a call to

EdgeX
micro service

EdgeX
micro service

EdgeX
micro service

EdgeX
System Mgmt
agent service

Start/Stop/Restart
 executor app

REST request to
start, stop or restart

GoLang s exec.Command

1

2 3

execute the executor’s functionality via GoLang’s exec.Command. See below for more details

on the execution call.

Docker Compose Executor
When using Docker Compose to execute the start, stop and restart of the other EdgeX micro

services, the executor will make command line calls to Docker Compose. However, this is not

as straightforward as one would think. Complexity comes from the fact that the SMA (and

associated executor) is itself containerized in this type of environment and so a call from within a

normal container to Docker Compose would fail as Docker Compose is not installed inside of the

container.

Even if Docker Compose were part of the SMA’s container, a call to Docker Compose to start

(or stop or restart) the other services would be internal to the SMA’s container. This would not

be helpful since it would try to start the EdgeX services inside of the SMA’s container and not on

the Docker Engine where all the containers exist.

The answer to solve this issue is that the SMA must run inside of a special container – a Docker-

in-Docker container and that container must share a volume with the Docker Engine. This acts

in a way as to expose the Docker Compose calls out to the Docker Engine running on the base

platform. Thereby allowing the SMA (and its executor) to effect calls to start, stop and restart

the original EdgeX services running on the same Docker Engine as the SMA.

Docker Container

Base Platform

EdgeX
System Mgmt
agent service

Docker Compose
 executor

Call to Docker
Compose

?

Docker Engine

Docker Compose

Docker-in-Docker container

Base Platform

EdgeX
System Mgmt
agent service

Docker Compose
 executor

Call to Docker
Compose

Docker Engine

Docker Compose

Shared
vol

EdgeX
micro service

container

EdgeX
micro service

container

EdgeX
micro service

container

Note that in the Delhi release, this obstacle required that the SMA be deployed outside of Docker

so that it’s calls to Docker Compose were made directly – a non-desired and probably non-

sensical deployment scenario.

Docker Compose Executor Internals

Again, the makeup of the executors is at the implementer’s discretion. However, it is likely that

inside of the Docker Compose Executor, there would be code similar to code today in

internal/system/agent/executor/docker.go.

 StartService(services string, params []strings){
 //Docker Compose call would ignore params
 call to start via docker-compose
 StopService(services string, params []strings){
 //Docker Compose call would ignore params
 call to stop via docker-compose
 ReStartService(services string, params []strings){
 //Docker Compose call would ignore params
 call to restart via docker-compose

Note: per exchange among system management implementors, it was decided to put all three functions
into a single interface (currently in internal/system/agent/interfaces/ExecutorClient.go).

Linux OS Executor (stretch goal for Edinburgh)
For the Edinburgh release, the Docker Compose Executor will be used as the reference

implementation executor for use with the SMA. A second Executor will be provided for use in

non-container solutions to provide start, stop and restart functionality and to provide a second

example to those looking to build their own executors. This Executor will take advantage of

Linux OS capability and Shell scripts to provide the start, stop and restart functionality.

Linux OS Executor Internals

This Linux OS Executor will use calls to a shell script similar to the edgex-launch script in the

edgex-go repository (see https://github.com/edgexfoundry/edgex-go/blob/master/bin/edgex-

launch.sh) to start the services. It will use Linux process status calls to “kill” services in order to

stop them (similar in code submitted by Ian Johnson below).

func (oe *ExecuteOs) Stop(service string, params []string) error {

Base Platform

EdgeX
System Mgmt
agent service

Call to Docker
Compose

Docker Engine

Docker Compose

EdgeX
micro service

container

EdgeX
micro service

container

EdgeX
micro service

container

https://github.com/edgexfoundry/edgex-go/blob/master/bin/edgex-launch.sh
https://github.com/edgexfoundry/edgex-go/blob/master/bin/edgex-launch.sh

 cmd := exec.Command("ps", "-ax")
 out, err := cmd.CombinedOutput()
 if err != nil {
 return err
 }
 pid, err := parseProcessListing(string(out), service)
 if err != nil {
 return err
 }
 proc, err := os.FindProcess(pid)
 if err != nil {
 return err
 }
 return proc.Kill()
}

Location of the Executor code

Both the Docker Compose and Linux OS Executor will be located in the edgex-go code

repository. Other executors will reside in a separate repository that may or may not be owned

and managed by EdgeX.

The Docker Compose executor does not need any EdgeX models, libraries, etc. it can stand

alone. The only packages that it should need is some type of logging and the Go Lang os/exec

package. However, for ease of use and building the Docker image for the SMA, it will live in

the /cmd/sys-mgmt-agent folder of edgex-go.

The Linux OS Executor (this reference implementation used for Snappy deployments today) will

reside in /snap/local/runtime-helpers/bin.

Because other executors may be created using other programming languages or technology and

because the EdgeX project does not want to have to maintain every executor that is created (a

non-scalable solution similar to that of having to maintain all database implementations for core-

data as an example), other executors will certainly reside outside of edgex-go and perhaps

outside of the EdgeX Foundry Github organizations (edgexfoundry and edgexfoundry-holding).

Linux

EdgeX
System Mgmt
agent service

Linux OS
 executor

Start

Linux Shell Script
Stop

EdgeX
micro service

EdgeX
micro service

EdgeX
micro service

process status and kill commands

EdgeX SMA API Trace
A request (by REST call) of the SMA to start, stop or restart service(s) begins at the router.

In internal/system/agent/router.go

b.HandleFunc("/operation", operationHandler).Methods(http.MethodPost)

The router passes the request to the operationHandler function where action, services and

parameters are determined.

In router.go

operationHandler()
// invoke the operation and check the result
err = InvokeOperation(o.Action, o.Services, o.Parameters)

The invocation function (InvokeOperation) then makes the call to the specific start, stop or

restart interface on the executor client to invoke the specific operation (with the applicable

service name and parameters list) for each of the services. The executor client represents the

“executor” in the SMA and is the component that knows the actual location of the real executor.

In internal/system/agent/services.go
 func InvokeOperation(action string, services []string, params []string) error {
 for each service
 if Stop
 executorClient.(interfaces.ServiceStopper)
 if Start
 executorClient.(interfaces.ServiceStarter)
 if Restart
 executorClient.(interfaces.ServiceRestarter)

The functions (ServiceStopper, ServiceStarter and ServiceRestarter) are all defined by

internal/system/agent/interfaces/services.go. This interface allows for other future

implementations (outside of the “executor” model).

services.go Interface Implementation
The executor client instance (that implements the internal/system/agent/interfaces/services.go

function definitions) is established on bootstrapping of the SMA. Specifically, it is defined in

init.go.

In init.go
func newExecutorClient(operationsType string) (interfaces.ExecutorClient, error) {

// use the configuration to provide the executor with the location (appPath)
// to the actual executor program.

 return &executor.ExecuteApp{}, nil
}

The executor client provides the ServiceStopper, ServiceStarter and ServiceRestart functions that

each make calls to Go Lang’s os/exec.Command(name string, arg… string) and then

subsequently exec.CombinedOutput to run the command and get the returned standard output

and standard error returns.

 cmd := exec.Command(appPath, serviceName, actionName, parameters…>)

 stdoutStderr, err := cmd.CombinedOutput()

Go Lang Exec calls
When the executor client makes the Go exec.command call, name string is the appPath to the

Executor application. The remaining args are the service name (EdgeX micro service name),

action name (start, stop, or restart) and then any, optionally, additional parameters the Executor

may need or want.

executable-name (which is the appPath) service-name action-name optional-parameters

API Rest Call

to start, stop,

or restart
router.go

"mux routing"
router.go

REST call

return

operationHandler

return

services.go

InvokeOperation

executorClient

services interface

loop

for each service

alt

Start

Stop

Restart

ServiceStopper

ServiceStarter

ServiceRestarter

Parameter strings provided by configuration and passed from the SMA through to the executor

can be used to provide platform or environmental indicators to the Executor. For example, in

some environments, there is the ability to enable/disable restart of services on restart or reboot of

the underlying platform. The parameters list would be separated by a space if there was more

than one.

Per the Go Lang documentation, the call to exec.CombinedOutput will return a 0 or 1 (via the

byte[] return) along with the standard output and standard error back to the SMA. A return of

string 0 indicates that the execution completed its task and exited “normally” or without issue. A

return of string 1 indicates that the execution did not complete “normally” and the caller should

check the standard error for more information. The Executor should always return some

information string indicting why the non-normal return when 1 is returned on the standard out.

See https://golang.org/pkg/os/exec/ for more details.

Note for future implementations: Go Lang plugin architecture may someday be used for the

Executor. Today, plugins are a Linux only feature in Go Lang and therefore not being used for

this implementation.

EdgeX
SMA

Executor
@ appPath location

Executor
Client

cmd = exec.Command(appPath, service-name, action-
name, <optional parameters
exec.CombinedOutput(cmd)

https://golang.org/pkg/os/exec/

