

System Management, Phase I (Delhi Release), Design
Version 3, 7/24/18

Microservice SM Agent (SMA)

Design Considerations

SMA is an optional service

We have to accept that the system management agent (and some of the API in the sys management API

of each service) may be provided by more industrial / enterprise capability like Kubernetes or cloud

deployment/orchestration facilities. So we have to have a platform that allows the agent/apis to be

turned off.

Each service containing the SM API must have a configuration setting that turns off, protects or

otherwise causes the SM API on the services to no-op. This makes sure some rouge process does not

use the API and bypass some other system management capability.

How to determine “all” services

The system management agent (SMA) must know what services it manages and where each service is

located. It often makes a call to all of the EdgeX microservices (ex: to stop all services or to start all

services). How is “all services” defined or determined? When Consul is running, it can provide a catalog

of registered services, but this exposes a chicken and egg problem. If the SMA is requested to restart all

services, for example, it could use Consul information to get all services and issue a stop command to

each, but how would it be able to then send a start command to each if Consul is not even up yet?

Further, EdgeX has been created to operate without a registry/config service – especially for developer

environments. Can the SM Agent operate without config/registry?

In order to facilitate the independent operation of SM and one that may bootstrap all of EdgeX, the SMA

will be provided configuration (a manifest) that specifies the services it is to manage. As with all services

today, a bootstrap property (like –consul) will indicate to the SMA to get the configuration from the local

file system or from Consul. The config will list the services that the SMA is managing and provide

information on start/stop of each. More details on this configuration file is provided below under SMA

Manifest.

SMA Manifest - Service Registry and Start/Stop Commands

As the SMA must be able to start and stop each service (restart too but this is just a combination of stop

and start), it must know how to issue the appropriate command for start and stop of each service.

Unfortunately, the start and stop of each service may be directly associated to containerization (Docker

start/stop commands), service technology (Java, Go, etc.) and many other factors.

While EdgeX can attempt to standardize how its services are managed, there are associated 3rd party

infrastructure services (MongoDB, Consul, Kong, etc.) that will not adhere to EdgeX guidelines. In fact,

these services will have to be managed differently in that they will also not be able to respond to the SM

API set.

A manifest configuration file must be provided to the SMA (either via Consul or the local file system as

indicated by a bootstrap property like –consul). This file must contain the names of the services, the

intended location of the services (which for now would always be on the same host), and the commands

to issue in order to start/stop the service. The manifest will also signify where the service is an EdgeX

microservice (and conforms to the SM API) or if the service does not (MongoDB, Consul, etc.) and

therefore not be subject to standard EdgeX API calls.

This file will boostrap the SMA. Different versions of the file may exist depending on how/where EdgeX

is deployed (Docker v. Snappy, Windows v. Linux, etc.).

In this first release of the SMA, the manifest file will be static. In the future, the manifest may be more

dynamically contrived or provided by some 3rd party orchestrator.

System of record for configuration
While Consul is generally regarded as the home for configuration information, each service gets the

configuration from either Consul or its local configuration file depending on startup parameters. So, in

reality, only each service knows what its real configuration. Therefore, the SMA must request

configuration information from the service itself - and allow the configuration to come from Consul or a

local configuration file as deemed by that service.

Metrics Significant Change

On any dynamic metric, like memory usage, clients that have interest in the change are usually

interested in “significant” change. But the significance may be environmentally or client dependent.

Therefore, on startup of any service, a configuration property must be specified that indicates the

min/max range for the metric. The range can be different per service and per metric. Registered clients

are notified by the service when the metric is outside the range.

SM Agent API
The SMA must be able to respond to the following public REST APIs

 Stop all EdgeX microservices

o api/v1/stopall

 Stop an EdgeX microservice by name

o api/v1/stop/servicename

 Start all EdgeX microservices

o api/v1/startall

 Start an EdgeX microservice by name

o api/v1/start/servicename

 Restart all EdgeX microservices

o api/v1/restartall

 Restart an EdgeX microservice by name

o api/v1/restart/servicename

o predicated on no – sleep time between stop/start

 Ping an EdgeX microservice (check that the service is still up)

o api/v1/servicename/ping

 Get the configuration settings (aka properties) for an EdgeX microservice by name

o api/v1/config/servicename

o Hateos pattern – consider and include along with Emad

o https://spring.io/understanding/HATEOAS

 Get the configuration setting (aka property) for an EdgeX microservice (by name) by

configuration setting name (aka key)

o api/v1/config/servicename/key

 Set the configuration setting (aka property) for a writable (versus read only) property for an

EdgeX microservice (by name). Example: the port of a service is read only whereas the log level

maybe updated (writable).

o api/v1/config/servicename/key [POST] with new value as body

Removed for the release due to complexity of issues and shortened delivery window

 Get the memory usage for an EdgeX microservice by name

o api/v1/memory/servicename

o Need full API with JSON

o May need additional params (like force stop on start/stop commands)

 Get the current Admin status (locked or unlocked) of an EdgeX microservice (only valid for

Device Services?)

o api/v1/adminstatus/servicename

o Removed for the release due to complexity of issues and shortened delivery window

 Register/deregister a client for change to a configuration setting, status change, or significant

memory usage change to a named EdgeX microservice

o api/v1/register/servicename [POST / DELETE] with the client callback and element of

interest (config, metric, admin status) specified in the body

An SMA package defines these functions:

Stop()

For each service, use the local manifest (likely cached on bootrstrap) to issue the
appropriate stop command to each service.
Issues:

 Does each service need to acknowledge back? Are there dependencies which
require acknowledgement before stopping others?

 discussion

 Wouldn’t want caller to do all that magic – return a token from SMA and use
that token to check on status from SMA

 Would require SMA to have state management

 Crawl before walk would say do it synchronously

 Walk to run would be async later

 Sync call to stop,
o Want to async send stop to each service

 Whole operation gets a timeout – reports what acknowledged
and what did not acknowledge by timeout

o SMA then responds 200 & list of acknowledged vs non-acknowledged
o SMA does not stop itself (but SMA needs its own stop API)

 Noop-handling for now for checking if stop really did happen
o Future – determine how / what actually stopped – but differs per

language, OS, docker, snap, etc.

 Should we have a look at other system management APIs – MEC,
OpenStack/Windriver (StarlingX), Kubernetes, Docker, sysd, Snappy

Stop(servicename)

Stop the service using the stop command specified in the local manifest.
Issues:

 How to respond if servicename does not exist?

 What if other services are dependent on the named service?
Start()

For each service, use the local manifest (likely cached on bootrstrap) to issue the
appropriate start command to each service.
Issues

 Does order matter? Presumably it does. If so, what happens on start if one
service cannot be started?

 Handle by manifest order

 Support it “in case” – but we are working to ameliorate so we don’t have time
dependencies. But we don’t want another place where configuration and order
of that kills. Therefore – services must be decoupled from tight dependencies.

Start(servicename)

Start the service using the start command specicfied in the local manifest.
Issues:

 How to respond if servicename does not exist?
Restart()

For each service, use the local manifest to stop and then start each service (with same

issues applying from above)

Restart(servicename)

Stop and restart the service using the stop and start command from the local manifest

(with same issues applying from above)

Ping(servicename) – drop because we are duplicating functionality; also it may come from

Docker or Snappy, etc.

SMA may eventually need to report best it can what is running (see start/stop functionality), but

this is dependent on system, OS, language, etc.

If the service is an EdgeX service (versus MongoDB, etc.), then call on the ping operation
of the service.
Issues:

 Service is not up or available, what’s the default response?

Config()

For each service that is an EdgeX service, collect and return the configuration for all
services by calling on each the Config operation of each.
Issues:

 What if a service is not up to respond?

 What is the structure of the return given multiple services and multiple configs?

 Refactored structure part of Config-v2 – JSON
o TOML is file format and easier to write for human. Internally, everything

is JSON object
o Side issue – Device Service and Core WG needs to align on config-v2

Config(servicename)

This operation should only apply to EdgeX services (versus MongoDB, etc.). Collect and
return the configuration for the specified service by calling on the Config operation of
the service.
Issues:

 What if the service is not up to respond?

 What is the structure of the return? It should be consistent with Config() call.
UpdateConfig(servicename, key)

This operation should only apply to EdgeX services (versus MongoDB, etc.). Call the
UpdateConfig function on the service to update the value in the configuration structure.
Issues:

 What if the service is not up to respond?

 In order for this to remain persistent, it would have to change the value in
Consul or in the local properties file. Do we allow this?

 How can we determine if a property is writable?

 How to receive and acknowledge the update?

Memory(servicename)
This operation should only apply to EdgeX services (versus MongoDB, etc.). Call the
Memory function on the service
Issues:

 As there will probably be many metrics requests in the future, should this be a
generic Metric(servicename, metricname) to allow for more dynamic capture in
the future? Implementation of each type metric capture could be very different
under the covers.

 What if the service is not up to respond?

 Exactly what to report and in what unit of measure from the stats

AdminStatus(servicename)
This operation should only apply to EdgeX services (versus MongoDB, etc.). Call the
AdminStatus function on the service
Issues:

 What if the service is not up to respond?
Register(servicename)

Depending on POST or DELETE operation, register or deregister for changes in a service
(either config, admin status or memory usage)
Issues:

 Who/what keeps the registration information persistent?

 How to specify a client and what protocols are supported? Probably best to first
start out with just HTTP clients – specifying an endpoint URL to call when event
change has occurred

 How to specify the registration of interest (config change, admin status change,
memory change)

 Format of data to send on any change in the service

Gorilla Mux or other router, directs the REST client requests to these methods.

Microservice System Management (SM) API
Each EdgeX micro service must be able to provide the following public REST APIs

 Stop this microservice

o api/v1/stop

 Get the current Admin status (locked or unlocked)

o api/v1/adminstatus

Removed for the release due to complexity of issues and shortened delivery window

 Get the configuration settings (aka properties) for this microservice

o api/v1/config

 Get the configuration setting (aka property) for this microservice by configuration setting name

(aka key)

o api/v1/config/key

 Set the configuration setting (aka property) for a writable (versus read only) property for this

microservice

o api/v1/config/key [POST] with new value as body

Removed for the release due to complexity of issues and shortened delivery window

 Get the memory usage for this microservice

o api/v1/memory

A system management package defines these functions (which could also be interfaced like db.go).

Ideally, the package is common and used by all services in the same way.

Stop()
Initially, this may be a simple call to os.Exit().
Issues:

 Eventually need a graceful shutdown. Options to use context
(https://medium.com/@matryer/make-ctrl-c-cancel-the-context-
context-bd006a8ad6ff) and/or something like this:
http://guzalexander.com/2017/05/31/gracefully-exit-server-in-go.html
for more graceful exits.

 How does this impact the service that is dockerized (or otherwise
containerized)? By killing the executable will Docker detect and also
shutdown?

AdminState()

https://medium.com/@matryer/make-ctrl-c-cancel-the-context-context-bd006a8ad6ff
https://medium.com/@matryer/make-ctrl-c-cancel-the-context-context-bd006a8ad6ff
http://guzalexander.com/2017/05/31/gracefully-exit-server-in-go.html

Today, not all microservices have or use an AdminState (something to consider
for future releases). Only device services have an adminstate which is obtained
via call to metadata. Check that it is a device service and if so, return
adminstate which should be same as what is in metadata.
Issues:

 how to know if a service is a device service or not?

 What to return on non-device services if this functionality is added
generically to all services by package

Config()
Per core and support services, each service loads configuration from the file
system or Consul at startup (under Init.go). A call to this function can simply
map and return the configuration structure to simple key=value pairs already
loaded by the service.

ConfigFor(key string)
Per core and support services, each service loads configuration from the file
system or Consul at startup (under Init.go). A call to this function returns the
value at the key for the config structure.
Issues:

 Need to address issue of what to return when the key is not found.
UpdateConfig(key string, value string)

Per core and support services, each service loads configuration from the file
system or Consul at startup (under Init.go). A call to this function will update
the value in the configuration structure.
Issues:

 In order for this to remain persistent, it would have to change the value
in Consul or in the local properties file. Do we allow this?

 How can we determine if a property is writable?
Memory()

Create a function that returns data from Go Lang’s memory stats. See
https://golangcode.com/print-the-current-memory-usage/ and
https://golang.org/pkg/runtime/#MemStats.
May want to capture metrics to a persistent store/cache.
May want to provide an abstraction layer for implementation of the collection
of data (or any of these functions) so that it allows for different implemenations
by 3rd parties or even EdgeX in the future. For example, the 3rd party may
provide the version that takes care of persistence or pushes the metric data to
some place like Grafana.
Issues:

 As there will probably be many metrics requests in the future, should
this be a generic Metric(metricname) to allow for more dynamic capture
in the future? Implementation of each type metric capture could be
very different under the covers.

 Exactly what to report and in what unit of measure from the stats

Gorilla Mux or other router, directs the REST client requests to these methods.

https://golangcode.com/print-the-current-memory-usage/
https://golang.org/pkg/runtime/#MemStats

Microservice System Management (SM) Callbacks
Each EdgeX micro service must be able to provide the ability to inform interested clients of changes to

its configuration, admin status and memory usage (potentially other metrics in the future).

On any configuration or admin status change, the service should request a list of interested clients from

the SMA. Each interested client’s callback address should then be invoked with details on the change.

Memory usage (or other resource check) will require each service have a timer that calls to check on its

memory (or other resource in the future) on a routine / configurable basis. With each check, the value

will be compared to a service configuration specified range (min and max value). When the value of the

check is outside of the range, each interested client’s callback address should then be invoked with

details of the change.

