EdgeX Microservice Authentication

February 16, 2021
Architect’s Meeting
Background

- Question of authentication for EdgeX v2 API’s
 - Timely discussion -->

- What is at risk? Threat model
Threat Modeling - Assets

- **IoT data**
 - Read data from attached devices
 - Snoop on AI inferencing outputs

- **IoT control**
 - Issue device control command to control actuators in the real-world

- **System availability**
 - Issue transactions that cause the system to crash
Threat Modeling - Adversaries

- Root-level adversary (or OS, or firmware, or hardware)
 - Can’t protect against it - not worth discussing

- Network adversary (attacker coming in from network)
 - Single host: Protect via API gateway and localhost bindings (snaps) or docker bridge networks and being careful with IP routing
 - Distributed EdgeX: Unsafe without 3rd party solution

- User mode adversary
 - Any non-root user-level process running on the host (malware, USB auto-run, Javascript running in a web browser, TeamViewer with weak password, etc.)
Threat Modeling - Threats

• Malicious user level processes are able to issue arbitrary transactions against EdgeX microservices to collect real-world data or cause actions in the real world.

• Docker networking offers no protection from compromised host. Compromised microservices also can issue arbitrary transactions.

• Snaps share host networking stack; not possible to distinguish between EdgeX services vs other processes running on the host.
What are other people doing?

- 40% of respondents to survey authorize requests at the microservice level

(General survey; would hope that this number would be higher for IoT scenarios.)

https://tsh.io/state-of-microservices/#varia
Recommendations

• Enable token-based microservice authentication
 • Use OIDC-compliant Vault Identity secrets engine
 • Vault will share a public key that will validate tokens that it issues
 • Sending microservices use their existing secret store tokens to request OIDC-compliant identity tokens from Vault
 • Receiving microservices use the published public key to validate the JWT

• Define hook in V2 API for implementing authentication and authorization of incoming requests

• Write and approve an ADR
 • Decide how this feature will interact with API gateway
 • Decide granularity of permission enforcement
Alternatives

- Service meshes
 - Would be the “go-to” if EdgeX was a Kubernetes-only framework
 - No easy way to use this technology in Docker and Snaps
- Kong mediates everything
 - Doesn’t protect from the the adversary we are worried about
- Make it “pluggable” instead
 - Write sender and receiver hooks to work with any OIDC-compliant identity provider. Users expected to bring their own IDP.
 - Do above in lieu of Vault-based IDP implementation.
Timeline

- Ireland
 - Implementation too big
 - Can define API v2 authentication and authorization hooks
 - Can provide null implementation (all requests authorized)
 - Can start the ADR
- Jakarta or later
 - Approve the ADR
 - Start and finish the implementation
Notes 2/16/2021

- Rodney asserts there is use case for federated identity
- Rodney has info on bridging security domains (e.g. bacnet to http) that play into this discussion (would prefer not to bridge)
 - JimW focus on service-to-service first
- JimW wants to know if can wrap Vault so that it will work with a pluggable solution (also, why not mTLS listed in alternatives?)
- Clarify: this proposal is for service-to-service communication
 - What about pass-through authentication? Simplest is pass-through of token and mitigates confused deputy / escalation attacks.
- Next step: research the above and start an ADR
Thank You