
Fuji (version 1.1) marks the 5th community release of EdgeX Foundry. It was formally released in November 2019. In addition
to a number of new features (cataloged here), Fuji also represented efforts to help improve the overall performance of the
platform (improving the performance quality of the code base, providing more asynchronous behavior, etc.).

This report is intended to be a regular part of each release going forward; providing EdgeX users with information they can
use to guide their solution development and deployment while also assisting the EdgeX development community to target
future performance improvements (and testing needs).

Raw data underlying this report is provided here.

EdgeX Foundry
Performance Report
Fuji Release
01 March 2020

 www.edgexfoundry.org

Deployment Options
The EdgeX Foundry platform is comprised of a collection of microservices. While a number of services are used in almost all
deployments of the platform, the specific collection of services used are dependent on the use case, solution architecture, and
user discretion.

EdgeX provides flexibility in its architecture that offers many options for deployment and use. A user of the EdgeX platform
could deploy using the central logging service or have each service log to a local file (bypassing the need for the logging
service). A user could deploy with Redis or Mongo databases. In very austere environments, a deployment many only include
a device service and a few core services.

Therefore, this report provides resource usage based on the “general” deployment and “minimal deployment”. The general
deployment includes all those services used together as envisioned by the original architects of the platform and inclusive of
one example device service. Specifically, the general deployment includes the following services and infrastructure:

2

Note: The current report does not include the rules engine as part of the performance metrics exploration. The Fuji release uses Drools as the rules
engine. Drools is a Java enterprise rules engine. As such, it is quite large and slow and not entirely suited for edge use cases. Its inclusion in any
metrics would have severely skewed the statistics reported here.The Geneva release will include a Go based replacement and provide a better
indication of command actuation and other related statistics.

Service EdgeX Service Name EdgeX Required or Optional
Consul edgex-core-consul Optional – configuration can be obtained from local file

Database edgex-redis Redis in this configuration. Mongo is the alternative.

Core Data edgex-core-data Required

Core Metadata edgex-core-metadata Required

Core Command edgex-core-command Optional – only required in actuation use cases

Support Logging edgex-support-logging Optional – logging can also be done to local file

Support Notifications edgex-support-notifications Optional – services do not have to notify via central service

Support Scheduler edgex-support-scheduler Optional – services do not have to use a central scheduler (Device Services
embed their own)

Export Client edgex-export-client Optional – clients can register for data of interest

Export Distro edgex-export-distro Optional – delivers data to registered client

Device Virtual edgex-device-virtual Optional – any number of device services can be connected. Device Virtual
serves as the representative example

Service EdgeX Service Name EdgeX Required or Optional
Database edgex-redis A database is required and Redis is much smaller in its typical resource usage

Core Data edgex-core-data Required

Core Metadata edgex-core-metadata Required

Device Virtual edgex-device-virtual A deployment would include at least one device service and the virtual device
service serves as the representative example

The minimal deployment includes a subset of services that support a basic deployment:

Service Executable and Image Size
(Footprint)

EdgeX microservices are compiled into an executable
(typically from either a Go or C code base). That
executable has a size – otherwise known as footprint
– as it sits on disk. Additionally, the executable, along
with a base operating system, any needed configuration
and supporting infrastructure, is “containerized” for use.
Specifically, EdgeX microservices are built into Docker
containers for ease of deployment and orchestration
with other EdgeX services. These containers also have
a footprint size (typically much larger as it incorporates a
base OS, infrastructure, configuration, etc.) as it sits on
disk.

Depending on the use case, a user of EdgeX may choose
to use EdgeX in either containerized or non-containerized
form (that is use the executable without using Docker). The
raw executables could also be used to deploy/orchestrate
EdgeX using an alternative mechanism.

Both the non-containerized (“Executable footprint”) and
containerized footprint ("Image footprint") are reported here
for platform user consideration. Because the compile and
containerization differ slightly on Intel and Arm based-
platforms, statistics for both are provide.

In general, the footprint of EdgeX is around 330MB
containerized and just under 300MB non-containerized
but inclusive of the infrastructure elements (database and
configuration/registration service). EdgeX services, by
themselves without infrastructure are around 180MB in
size.

Footprint in MB Intel/AMD Intel/AMD ARM ARM
Micro service Container Executable Container Executable
edgex-core-consul 106.99 98.3 111.71

edgex-redis 29.33 9.9 29.09

edgex-core-data 28.46 20.61 27.37 19.81

edgex-core-metadata 21.74 21.73 21.11 21.10

edgex-core-command 20.47 20.46 19.84 19.84

edgex-support-logging 19.45 18.70 19.00 18.20

edgex-support-notifications 22.21 20.62 21.63 19.99

edgex-support-scheduler 20.66 20.65 20.00 19.99

edgex-export-client 20.39 20.38 19.83 19.82

edgex-export-distro 26.18 18.33 25.24 17.67

edgex-device-virtual 20.19 20.16 19.12 19.09

TOTAL 336.07 181.64 333.94 175.51

General Deployment Footprint
Note: Executable sizes (shown in
blue background) for Consul and
Redis obtained from inspection
of respective Linux containers
for binary images (consul in /
bin and redis-server in /usr/local/
bin). Executable sizes of Consul
and Redis are not included in
the TOTAL for executables at the
bottom of the column.

Footprint in MB Intel/AMD Intel/AMD ARM ARM
Micro service Container Executable Container Executable
edgex-redis 29.33 9.9 29.09

edgex-core-data 28.46 20.61 27.37 19.81

edgex-core-metadata 21.74 21.73 21.11 21.10

edgex-device-virtual 20.19 20.16 19.12 19.09

TOTAL 99.72 62.50 96.69 60.00

Minimal Deployment Footprint

3

CPU Usage
The CPU usage of each container was measured on startup of the service. It is measured as a percentage of CPU available as reported by the Docker Engine. Because the CPU characteristics
of the Intel and ARM platforms vary, the percentage of CPU usage can differ widely. CPU usage on an Intel Atom Processor (E3805 1.33GHz 1MB L2 cache) is around 25% - inclusive of
infrastructure elements (database, configuration/registry, etc.). On an ARM Cortex A processor (1.4GHz 64-bit quad-core Broadcom Arm Cortex A53), CPU usage sits near 60% - again inclusive
of infrastructure elements.

CPU Usage % at Startup Intel/AMD ARM
Micro service Container Container
edgex-redis 0.47 0.63

edgex-core-data 1.98 1.66

edgex-core-metadata 1.87 1.49

edgex-device-virtual 0 0.34

TOTAL 4.32 4.12

Minimal Deployment CPU Usage

Future Consideration: In general, the services consume a lot of CPU
as they startup and so the measure of usage at startup can be a good
upper bound for many services. However, future performance tests will
also test the CPU usage periodically throughout a period of time and at
peak sensor data ingestion and device actuation times.

4

Memory Usage
Again, the memory usage of each container was measured
on startup of the service. It is measured in MB used as
reported by the Docker Engine. Memory usage, in a
containerized environment, sits around 60MB for Intel
and 75MB for ARM platforms (inclusive of infrastructure
elements).

Memory Usage at Startup in MB Intel/AMD ARM
Micro service Container Container
edgex-core-consul 19.99 27.44

edgex-core-redis 2.13 2.62

edgex-core-data 4.94 5.30

edgex-core-metadata 5.55 6.74

edgex-core-command 3.02 3.88

edgex-support-logging 3.80 4.83

edgex-support-notifications 3.62 4.69

edgex-support-scheduler 3.39 4.16

edgex-support-client 3.10 3.96

edgex-support-distro 3.65 4.24

edgex-support-virtual 6.56 7.14

TOTAL 59.75 75.00

General Deployment Memory Usage

Memory Usage at Startup in MB Intel/AMD ARM
Micro service Container Container
edgex-redis 19.99 27.44

edgex-core-data 4.94 5.30

edgex-core-metadata 5.55 6.74

edgex-device-virtual 6.56 7.14

TOTAL 37.04 46.62

Minimal Deployment Memory Usage

Future Consideration: In general, the services consume various
amounts of memory during operation. Future performance tests will
also explore the memory usage at peak usage times such as during
sensor data ingestion and device actuation.

Operational Latency

Startup and Ping Operations
Currently, the startup (a.k.a. bootstrap) time and response
to the HTTP ping request are the only two operational
performance measures collected across all services.
Additionally, the time to export the data to an endpoint is
also measured.

The time to start all EdgeX services is less than 4
seconds on an Intel platform – including the time it takes
to create the container (although not the time it takes to
pull the container from Docker Hub). Startup time on ARM
platforms takes a bit longer; often a second more. The ping
of any service typically takes less than 15 milliseconds,
regardless of platform.

The time to pull the Docker container image, create
the container and start all of the EdgeX containers
is significantly higher – especially on more resource
constrained platforms. The time to pull, create and start
EdgeX containers on the 2GB (RAM) Intel platform is just
under a minute. The time to pull, create and start EdgeX
containers on a 1GB (RAM) ARM platform is a just over a
minute and a half.

CPU Usage % at Startup Intel/AMD ARM
Micro service Container Container
edgex-core-consul 13.49 46.00

edgex-core-redis 0.47 0.63

edgex-core-data 1.98 1.66

edgex-core-metadata 1.87 1.49

edgex-core-command 1.72 1.59

edgex-support-logging 1.71 1.77

edgex-support-notifications 1.64 1.98

edgex-support-scheduler 1.87 1.76

edgex-support-client 1.59 1.53

edgex-support-distro 0.06 0.20

edgex-support-virtual 0.00 0.34

TOTAL 26.4 58.95

General Deployment CPU Usage

Startup Time: Intel/AMD Intel/AMD Intel/AMD ARM ARM ARM
Micro service Executable

Startup (ms)
Container

Startup Time (s)
Ping
(ms)

Executable
Startup (ms)

Container
Startup time (ms)

Ping (ms)

edgex-core-data 838.18 41.74067712 19.43 678.75068 73.91606617 23.32

edgex-core-metadata 383.33 44.56999302 11.58 2699.670399 71.84158325 19.105

edgex-core-command 256.94 51.48968911 10.97 297.965289 81.10887623 9.449

edgex-support-logging 118.61 32.67362809 13.68 2091.646797 56.17503428 10.106

edgex-support-notifications 177.50 43.3496232 15.12 414.655227 73.98805928 13.629

edgex-support-scheduler 244.80 50.37671804 11.31 1957.121666 83.89384127 11.338

edgex-export-client 242.41 47.67028117 9.85 633.752687 84.20551419 12.188

edgex-export-distro 199.73 54.43341112 12.97 689.506076 97.24861026 10.656

edgex-export-virtual 1340.80 59.39391804 12.89 4287.060543 100.3819423 11.76

TOTAL 3802.28 59.39391804 117.80 13750.12936 100.3819423 121.56

Note: additional measures were taken to pull and to start the micro service containers in alternative scenarios and modes. These measures are highly
dependent on Docker Hub and Docker Engine and are not summarized in this report but are available in the raw data sets provide here.

Future considerations: beyond startup up and general response, understanding the performance of data as it moves through EdgeX services is a
critical factor in understanding the platform going forward. In future releases, the community will begin to look at performance involving many services –
that is exploring performance associated to the interoperability of services (ex: time to collect sensor data and cause actuation to another device).

5

Data Export
The time it takes to send EdgeX data from the “south side”
to the “north side” has improved for Edinburgh. This is
inclusive of the time it takes the virtual device service to
create the Event/Reading, send it to (and through) core
data, and have the export service read and prepare the
data for a north bound system. The Edinburgh release
uses Export Services. Future releases will be based on the
new Application Services.

Export includes extracting the event from the Core Data
supplied event message topic, performing the export
operations (including filtering by device name), sending the
data to its designated endpoint, and marking the record as
“pushed” in core data.

Intel / AMD ARM

16.69 ms 18.00 ms

User Guidance
The deployment of an edge solution is dependent on
many variables including: device connectivity and volume
of data processed from the sensors/devices, how often
data is sensed, how quickly actuation must be achieved,
amount of data sent to north side systems. As the EdgeX
community continues to test its product, it will continue to
make recommendations on required resources to execute
EdgeX based solutions under various loads and to refine
any system requirements. At this time, the following
minimal requirements are defined based on existing
testing.

Hardware Recommendations
Memory: At least 1 GB of RAM

CPU: at least 30% free CPU on Intel platforms and 50%
free on ARM platforms

Disk space: dependent on the number of EdgeX services
running, the amount of data captured and the length that
the data is retained (including sensor data, service logs,
etc.), it is advised that the platform have at least 500MB of
free space available.

Methodology
The following notes describe how the performance data
found in this report was captured. The services were
run with default configuration. The Device Virtual was
allowed to run and produce sensor data in its default
manner (generating data every 30 seconds for a variety of
mimicked sensors).

The CPU and memory usage data was captured from
Docker Engine via docker stats after successful start up
of EdgeX using the release Docker Compose files. Export
testing was run 15 times – that is generating 15 event/
readings through core data and into export services via the
device service.

Tests were run on two hardware platforms:

• Intel – Dell Gateway 3002 (Atom E3805 processor
@1.33GHz with 2GB RAM, 8GB disk, running Ubuntu
18.04 LTS)

• ARM – Raspberry Pi 3 B+ (Broadcom BCM2837B0
Cortex A53 ARMv8 processor @1.4GHz with 1GB
RAM, 16GB disk, and running Ubuntu 18.04 LTS)

Copyright © 2020 The Linux Foundation®. All rights reserved. The Linux Foundation has registered trademarks and uses
trademarks, including for EdgeX Foundry. For a list of trademarks of The Linux Foundation, please see our Trademark Usage page.
Linux is a registered trademark of Linus Torvalds. Privacy Policy and Terms of Use.

Contact Us
For general information about Edge X, EdgeX Foundry, or
membership inquiries, please email info@lfedge.org

Visit our website at

www.edgexfoundry.org

EdgeX Fuji Release
The EdgeX v1.x series of release include important new
features as well as improvements and hardening of the
existing EdgeX functionality.

Highlights of the v1.1 Fuji release include:

• New and improved security services – fully integrated
with existing micro services (API Gateway, secure
storage)

• Application services and application functions SDK as
full replacements for older export services (we expect
to deprecate the export services with the next release)

• System management improvements include ability to
set EdgeX configuration

• Improved testing and quality assurance procedures
and tools

• Addition of an many more device services (to be
released independently in mid-December with the
device service SDK release).

What makes this release unique
• Over two years of combined intense development and

customer testing
• Stable API baseline for the standardization of an Open

IoT edge applications
• Cloud-agnostic Northbound communications with

full SDK and support for AWS, Google Cloud and
Microsoft Azure

• Multi-vendor Southbound connectivity options across
many popular protocols plus SDKs for ease of
development and integration of new protocols

• Improved Security and Management services
• Comprehensive testing, including performance and

scalability testing
• High-quality user documentation
• Cleaner and more flexible code base
• A huge Global partner ecosystem offering a range of

complementary products and services

Have you got any questions?
This document was produced by IOTech Systems
- a global IoT/edge software products company
offering Edge Xpert, which is a commercially
supported implementation of EdgeX Foundry.

If you have questions about this report or if you
need more information on IOTech or Edge Xpert,
email info@iotechsys.com or visit the website
www.iotechsys.com

