
Agenda - Hanoi Pre-wire
March 31-April 1

Logistics (and intros if needed): meeting today 7am – 10am PDT; tomorrow 12pm-3pm PDT

Goals today:

1) Perhaps, establish some new tenets that help guide Hanoi and future release work

2) From all the possible features, tasks, tech debt or work we can do for Hanoi, what are possibly in

scope for Hanoi (what is possible in and what is definitely not in scoping exercise)

a. For that work that is possibly in, do we need some preliminary research/prototyping,

etc. done before Hanoi planning conference to make a decision? Are there competing

ideas that need to be compared/contrasted and presented by teams?

b. Of all the possible work, are there items on our long list that should be removed –

forever? Can we use this exercise to cleanup our backlog of things no longer to be

considered?

Some immediate issues to resolve for Geneva

• Race condition testing. Tony has discovered that when running with race detector flag on, all

sorts of stuff is coming out.

o Is this a concern?

▪ Not sure that it is for sure issues but valid warnings

▪ Some DS timestamp issues (2281 bug) that may be related to race condition and

suggests we have many such issues. Could this be handled by configuration?

o What are others seeing?

▪ Whenever it has been turned on it has given CI/CD to problems; container

doesn’t handle it well

o What actions do we need to take prior to Geneva release?

▪ Internal to a service – race conditions

▪ Service interop – race between ordering ops from multiple services (not

detected by race flag)

o Is this something we should be doing regularly through DevOps/Testing?

▪ In makefile in edgex-go its on (race detector flag)

• It will fail unit tests if race flag on and it discovers issues

▪ Not being done in SDK makes (and services those SDKs make – DS, App Services)

▪ Not being done in all the modules

▪ Defer – race detection for all unit testing for Hanoi

• Some research necessary on why it was crashing in CI/CD

o Actions

▪ Mike & Iain – make files for SDKs and related services

▪ Tony to look at other services for races

• Config seed PR – do we need mini-freeze for Lenny’s PR?

o Lenny keeping up with rebasing

o Some bugs still being worked

Architecture Tenet Discussion

Before we begin our exercise to preliminarily scope Hanoi – or at least scope what is part of the Hanoi

planning conversation, there is before us some fundamental questions

1) Where does EdgeX run? Is it a platform that could run in the cloud and in what capacity? Is it

just a “thin edge” platform – running on things like a gateway in single instance mode?

2) Do we or will we allow parts of EdgeX need to be able to be distributed across hosts? If so, what

parts? How would we (or would we) secure the communications (generally – not details)?

3) Would parts of EdgeX need to run in some form of high availability mode? Abide by 12 factor

apps? Would all services need to be HA?

4) What does the architecture of EdgeX look like at some point in the future? What parts are

message bus based? Where is there persistence of sensor data at the edge (still with core or

support data)?

a. Yes – potentially for lots of services; both data and control plane

b. Yes – but start with data plane and see how it looks

c. Yes – but add service by service

d. If we do we need to think about generic events

e. Enable the services with messages on a use-case by use-case circumstance; need to be

individually considered.

5) Are there services we want to combine?

a. Goal: simplicity and performance (inter-process communication reduction);

b. All the core in one – perhaps core data out since it may be support-core

c. Is it a configuration/deployment operation vs hard coded single exe

Dell Perspective – more computing resources coming down to the edge; more HA farther out to the

edge. Thin edge makes sense at device level. DS need to run as stand alone agents – on constrained

device potentially. DS as single instance service that roles up to core (and behind it) in a cluster. More

monitoring in the cluster that gives visibility to the platform. Stop thinking about EdgeX as a set of micro

services on a Raspberry Pi. Everything but data ingestion needs to be scalable.

 Some agent to restart things if it fails

Steve O – failover needs to be throughout the system – to include device service.

Beechwoods – still interested in resource constrained platforms, but not necessarily monolithic EdgeX

install on a Pi, but services spread out over collection of platforms. HA features – in favor; but still need

to operate on resource constrained platforms. This is more about distribution of services – but not

opposed to HA. We can’t presume that security has to be in the services (versus around the monolithic

platform) since they can be distributed.

Tony – for Hanoi, should focus on core platform and not HA. Focus on DS only in distributed mode.

Is HA a goal for all services (except DS)? - leaning to HA, but need more real customer input and careful

not to lean away from very thin environments; on hold for now

Is service distribution a goal for all services? TBD

Distribution for DS?

If we can align on these basic questions, there is a feeling that this should start to guide our opinion on

scope for Hanoi and even beyond.

Hanoi planning – per doc at https://wiki.edgexfoundry.org/pages/viewpage.action?pageId=37912800

Put the elements in our list in one of these categories:

• Possibly In

• Probably out of scope for Hanoi

• Get rid of it – never going to happen or OBE

General / Cross Cutting Concern
1.3

New feature

• Go 1.15? But evaluate whether we take advantages of some of the new features; 1.13 wouldn’t

be supported if 1.15 comes out – Anthony Bonafide – research features we want and that could

impact us. (consider 1.14 as well?)

• Message bus between select services (DS – Appl Service)

o Core – as a optional subscriber on bus to persist (stretch??)

o Requiring broker or going brokerless or your choice – Lenny to present broad stroke

arch at planning meeting

o Supporting synchronous, asynchronous or both

• Support running a service on a different host than the other services. Specifically making it

easier to run a device service on a different host that the rest of Edge. As a stretch to this goal,

allow for select service high availability.

o DS – as stand alone – distributed services (security ?’s, orchestration ?’s) – every one

should understand Byron’s Option B proposal (Bryon / Tony– to send out slide deck to

TSC for review; refining to look at DS specifics)

▪ Security relative to DS to core and command to DS – part of Bryon’s research on

what other impacts

• Improving EdgeX resiliency in face of issues or non-availability of some resources/services/etc.

(typically for core and above services and not device services)

• Ensure all micro services follow 12 factor app methodology (see https://12factor.net/)

o Allow services to be load balanced

o Allow services to fail over

o Allow for dynamic workload allocation

o Allow services to live anywhere and be moved without lots of configuration to be

changed in other services

o Allow services to be distributed across hosts - and across API gateways (requiring service

to service communication protection)

• Support truly distributed microservices

o Allow services to run on multiple host machines

o Secure distributed EdgeX with reverse proxy

o Cross EdgeX instance command actuation (ex: device X on EdgeX box A triggers action

on device Y on EdgeX box B)

o Front a collection of duplicate microservices with a load balancer (allow for the

microservice copies to scale up or down based on load); allow multiple instances of any

microservice (for future load balancing and scaling efforts - today only single instances

are allowed)

• Develop a test environment/playground to test high-availability and distribute service

functionality.

• Allow for new category of micro services: “Sharing Services” for East/West data exchange with

non-EdgeX entities

• Meetup support

• Hackathon kits/support

• LTS on 1.x release

Tech Debt

• V2 API – iotech readout

• Deprecate Mongo

o Jim to get with Andre to discuss Redis security issues

o Do we mark Mongo as deprecated for Geneva – yes if Redis ready to go

• Removal of Value Descriptors in favor of data typing in the reading

o Part of V1 v V2 discussion

o Larger discussion about when V1 is deprecated/removed

o Devices with embedded device profile and addressable removal from all EdgeX

• Implementation of generic error handling across services

o How to wrap errors

o How to sanitize errors

• Develop process for security vetting of 3rd party components – security WG (Tingyu/Diana with

WG inputs) provide high level idea of process and what it would incur

o Review of licensing as part of the considerations

• Licensing file distribution with artifacts

o If we don’t cover in arch’s meeting

• Restructuring our compose files to take advantage of compose file overrides, which removed

the duplication in all our compose files. See

https://devilbox.readthedocs.io/en/latest/configuration-files/docker-compose-override-

yml.html - Lenny to provide readout/demo

Core / Supporting

New feature

• Allow for device hierarchy in metadata model: a device could be a manager for another device

while also collecting data itself. Sending a command to a managing device could mean sending

a command to all associated devices.

• Command: in order to protect the device from harmful commands, there should be the

possibility to set a Min and Max limit for the value that is accepted on every single command. in

fact the command service today is rather a hollow simple proxy, but in the future we very much

envisioned adding additional security, caching to avoid having to hit the DS when unnecessary,

and even grouping command requests for better resource conservation (especially for devices

like BLE that get woken up when you hit them).

• Drop logging service

• Change core-data to support data

• Support for alternate logging formats and/or more structured logging

o XML, CSV vs JSON

• Support automatic migration of Devices between Device Services

• Core Command support send commands to devices based on "label"

Tech Debt

• Tests should run cleanly when passed the "-race" argument

• core-command coupled to core-metadata database

o could be covered by combining the two services (backward comp issue)

o V2 issue

• Restructure the Redis DBClient implementation for Event/Reading

o Refactoring exercise

o https://github.com/edgexfoundry/edgex-go/issues/2166

Application Services / App Functions SDK / Analytics Integration

New feature

• Kuiper – next release

o Decouple from EdgeX

• Deprecate Drools rules engine

• Support Cloud Event export

• Support additional northbound endpoints and protocol types. Examples include:

o Tencent

o Alibaba

o IBM Watson

o IoTivity

o SAP HANA

o DDS

https://devilbox.readthedocs.io/en/latest/configuration-files/docker-compose-override-yml.html
https://devilbox.readthedocs.io/en/latest/configuration-files/docker-compose-override-yml.html

o AMQP

• Support enrichment functions (an EAI concept) in export services (or application services). Allow

additional data or information to be added to the flow of sensor data to the northbound

side. This might be information about the sensor/device that captured it or information about

the commands to actuate back down on a sensor/device.

• Integrate to edge software/agents

o AWS Greengrass

o Microsoft IoT Edge

• Support additional northbound formats

o Haystack

o OPC UA

• App Service Configurable – Allow same function twice

• Fork the pipeline?

o Allow various paths for different sensors for example

• Support multiple topics in SDK - go mod messaging

• Multiplexor to split out data from device services

• Pipeline per topic

• 0MQ export function

Tech Debt

• Improve binary data support

o Local edge analytics may be fed binary data and create intelligence from it to allow for

actuation at the edge based on the binary data (example: examine an image an detect

the presence of a person of interest).

o Support alternate message formats for service-to-service exchange (Protobuf, XML, etc.)

• Update SDK to use new persistence service

Device Services / Device Service SDKs

New feature

• Support Cloud Event import

• Data filter design between DS and Core Data

o Provide a design about how to implement this before implementing.

o If possible, can the filter functions be shared across App Services and D.S. (w/ App WG)

• Support additional southside connectors

o Profinet/Profibus

o CANBus

o LORA

o IoTivity

o Zigbee

o ZWave

• Better support mesh network protocols (Zigbee, BACNet, etc.) where devices know and

sometimes manage other devices

• Downsampling: It is mentioned that the device service may receive from the device new

unattended readings (e.g. in a pub/sub type of scenario). In this case, there should be a setting

to specify whether we accept all readings or we decide to downsample because the source is

pumping data too fast. This is actually a very common scenario when you deal with high

frequency sensor packages.

• Bound checking

o Number of operations that can be done

o Max request size (that lends to DoS, etc.)

• Cache fairly static information (device profiles, device information, etc.)

• Allow for easier device removal

Tech Debt

• SDK alignment – can / should the DS and Application Functions SDKs be more aligned (design,

usage, etc.)?

Security

New feature

• Add hooks for hardware-assisted protection of Vault Master Key to security-secretstore-setup

• Streamline proxy certificate upload flow

• Create a hardware secret storage design

o HW secure storage abstraction layer

o How to protect the Vault Master Key

• Ensuring the services running are those expected and authorized (w/ DevOps assistance)

• Enable Vault PKI secrets engine

• Enable user-specified Kong proxy certificate

• Secret store unsealing daemon

• Configure TLS encryption for kong+postgres channel

• Secure service to service communications

o Yes to DS to Core/Appl Service when distributed

o All?? Possibly – Bryon readout forth coming

Tech Debt

• Create and use a per service Vault token in the security services

• Blackbox tests of APIs through the API gateway

• Design work

o How to implement HTTPS in EdgeX (that is, how to protect all service endpoints with

HTTPS)

o How to implement role-based security across our all EdgeX services.

• Eliminate remaining dependency on curl and jq in scripts/security-proxy-setup-checker.sh

• Make docker container images read-only

• Set no-new-privileges option on containers

• Develop process for security vetting of 3rd party components

• Make docker container images run as non-root users

• Streamline proxy certificate upload flow

• Secure Kong admin port with TLS

• Enable CORS for API Gateway

• Rewrite security-secret-setup to remove legacy cruft

• Pluggable random database password generation

• Add method to retrieve metadata inserted by file-token-provider

• Check the consul/registry for the configurable settings in security-secrets-setup

System Management

New feature

• CLI improvements (do we have idea of what these might be)

• Metrics collection per ADR 0006

• System management - storing system metrics locally

• System management - actuation based on metric change (a "rules engine" for control plane

data)

• System management - add alerts and notifications (service down, metric above threshold, etc.)

• SMA support for other control plane protocols

• Helm charts or other Kubernetes “facilitation”

Tech Debt

• Improving system management capabilities to include providing an asynchronous set of APIs,

offering more EdgeX specific APIs, storing management metrics (for store and forward) and

exporting management data to 3rd party systems

• Look at Driving "Default Services List" via Configuration

• Refactor to enable operations against agent via executor

• Capture CPU metrics data for macOS

DevOps

New feature

• Sharpen our use of SonarCloud and provide developer education around it

• Automatic code formatting in CI/CD pipe

• Include a data filter between DS and Core Data (align with and share App Service filter function

if possible)

• Produce deployment artifacts that contain multiple services (e.g. a single core service docker

container versus core, metadata and command services)

• Produce service executables that combine services (e.g. create a single core executable that is

core, metadata and command all in one) via the build/make process.

• Set up codecov for edgex-global-pipelines

Tech Debt

• Improve performance of pipelines

• Snap build improvements

o Snap builds should use unbuffer for better output logging

o Update snapcraft inside docker to use new setup from snapcraft

o Make stage-snap jobs more smart about pushing metadata

• Root cause analysis of the ARM failures for blackbox-testing - Infrastructure failures

Certification
??

Vertical Solutions
??

Test / QA / Documentation

New feature

• User guidance on platform needs

o More performance statistics

o # of devices/per recommendations

o Providing EdgeX users guidance on platform needs, sensor data throughput and

deployment based on performance metrics. Specifically, with the Geneva performance

testing apparatus, the EdgeX community will be able to answer these questions for the

user:

▪ Will EdgeX fit on my system? - size of EdgeX services, infrastructure, etc. and

hardware/platform requirements

▪ What is the speed of data through the system? - from device service sensor data

ingestion to the rules engine and back down through command to another

device service to trigger a put command, how long does this take?

▪ How many “things” can be processed at a time? – with caveats on the type of

thing, type of data, etc.

▪ These questions need to be answered on real hardware (both Intel and ARM)

Tech Debt

• System integration / interoperability tests - Device Service read data -> Core Data -> Rules

Engine or Application/Export Service -> Command

• Add unit tests/testing for global libraries. (w/ DevOps help)

• Blackbox tests to edgex-go repo?

• Blackbox tests against snaps

• Configuration testing – testing non-default and dynamic config changes

Open Horizons

• Should be a separate project in spring 2020.

• Roadmapping/direction is self determined

• Any additional next steps for EdgeX integration?

