
Geneva Release Notes
5/13/20

The Geneva Release is the 6th successful community release of EdgeX Foundry. It is a minor (dot)

release (version 1.2) and therefore backward compatible with the Edinburgh (v1.0) and Fuji (1.1)

releases.

Although a minor release, a number of new and significant features and improvements are unveiled

with the release to include automatic device provisioning, a new rules engine implementation, and

batch and forward functionality to name a few.

Release Major Themes
• Dynamic / automatic device provisioning/on-boarding

• Alternate messaging support (RedisStreams, MQTT, 0MQ, …)

• Better type info in sensor data collection

• REST device service

• Batch and send

• Use of secrets for authenticated MQTT/HTTP exports

• Sensor collection of an array of types

• Redis as the default DB

• New rules engine (Kuiper vs Drools – written in Go; smaller / faster)

• Improved Security

• Interoperability testing

• DevOps Jenkins Pipelines

Adopter Warnings
• The EdgeX community has deprecated three features in this release of EdgeX. Deprecation does

not mean the feature is removed from this release, but it is a strong indication that the feature

will be removed in an upcoming release.

o MongoDB support has been deprecated. With the Fuji release, the community decided

to make Redis our default database. We now have intentions of removing MongoDB

from EdgeX in the near future. All code associated to storing/retrieving EdgeX data in

Mongo has been labeled as deprecated. Docker Compose files for MongoDB include a

warning to let you know support for MongoDB is coming to an end. Redis has been

selected over MongoDB by the community for ARM support, memory/footprint

improvements, license considerations and because of the involvement of the Redis Labs

in the project.

o The Support Logging service has been deprecated. The community felt that there are

better log aggregation services available in the open source community or by

deployment/orchestration tools. In this release, the logging service is not started with

the EdgeX provided Docker Compose files (it is still in the file but commented out). By

default, all services now log to standard out. If users wish to still use the central logging

service, they must configure each service to use it. Users can still alternately choose to

have the services log to a file.

o The Support Rules Engine (which wrapped the Java-based Drools rules engine) has also

been deprecated. EdgeX is partnering with the Kuiper project to provide new and

proved rules engine support.

• Redis is an open source (BSD licensed), in-memory data structure store, used as a database and

message broker in EdgeX. It supports data structures such as strings, hashes, lists, sets, sorted

sets with range queries, bitmaps, hyperloglogs, geospatial indexes with radius queries and

streams. Redis is durable and uses persistence only for recovering state; the only data Redis

operates on is in-memory.

o Redis uses a number of techniques to optimize memory utilization. Antirez and Redis

Labs have written a number of articles on the underlying details

(http://antirez.com/news/92, https://redislabs.com/blog/redis-ram-ramifications-part-

i/, https://redis.io/topics/memory-optimization) and those strategies has continued to

evolve (http://antirez.com/news/128). When thinking about your system architecture,

consider how long data will be living at the edge and consuming memory (physical or

physical + virtual).

o Redis supports a number of different levels of on-disk persistence. By default, snapshots

of the data are persisted every 60 seconds or after 1000 keys have changed. Beyond

increasing the frequency of snapshots, append only files that log every database write

are also supported. See https://redis.io/topics/persistence for a detailed discussion on

how to balance the options.

o Redis supports setting a memory usage limit and a policy on what to do if memory

cannot be allocated for a write. See the MEMORY MANAGEMENT section of

https://raw.githubusercontent.com/antirez/redis/5.0/redis.conf for the configuration

options. Since EdgeX and Redis do not currently communicate on data evictions, you will

need to use the EdgeX scheduler to control memory usage rather than a Redis eviction

policy.

Known Bugs

• Sensor readings are captured event/reading objects by device services. The event/reading

objects are used throughout EdgeX to transport the sensor data. An event can have multiple

readings associated. For example, in a single sensing, a thermostat may create an event with

two readings: one for temperature and one for humidity. There are currently no restrictions on

the number of readings on an event. In theory, an event can be packed with so many readings

that it creates an object that is MBs in size or even larger. This can cause the system,

particularly core data, start to slow down or even fail. In a future release, appropriate governors

will be put in place to prevent event/reading objects from getting too big. For now, users are

advised to monitor the size of their event/reading objects and break them apart if there are too

many or too big of readings associated to an event. Keep an eye on the database growth and

the number of events and readings in the database (the core data API reference gives you the

means to count events and readings). Routinely run core data clean up functions to clear out

pushed or remove old events/readings. Ref #2527.

• Removing a scheduler interval by ID when an interval action is still using it crashes the

scheduler. Ref #2520. The underlying problem is that the REST call to delete the scheduler

interval by ID does not perform a check to ascertain that the interval is currently in use. As a

work around, users are advised to follow the following procedure:

https://www.emqx.io/products/kuiper
https://redislabs.com/blog/redis-ram-ramifications-part-i/
https://redislabs.com/blog/redis-ram-ramifications-part-i/
https://redis.io/topics/memory-optimization
http://antirez.com/news/128
https://redis.io/topics/persistence
https://raw.githubusercontent.com/antirez/redis/5.0/redis.conf
https://app.swaggerhub.com/apis-docs/EdgeXFoundry1/core-data/1.1.0#/default/get_v1_event_count
https://app.swaggerhub.com/apis-docs/EdgeXFoundry1/core-data/1.1.0#/default/get_v1_reading_count
https://app.swaggerhub.com/apis-docs/EdgeXFoundry1/core-data/1.1.0#/default/delete_v1_event_scrub
https://app.swaggerhub.com/apis-docs/EdgeXFoundry1/core-data/1.1.0#/default/delete_v1_event_scrub
https://app.swaggerhub.com/apis-docs/EdgeXFoundry1/core-data/1.1.0#/default/delete_v1_event_removeold_age__age_
https://github.com/edgexfoundry/edgex-go/issues/2527
https://github.com/edgexfoundry/edgex-go/issues/2520

o At the outset of interacting with the support-scheduler service, first use the REST API to

get the entire interval information. For example, let's say that the ID happens to have

the value 71e5c882-61b8-4d98-a3b7-2aa68d60c5e6, then issue this cURL command

(using the ID value get the full interval information:

curl --location --request GET 'http://localhost:48085/api/v1/interval/71e5c882-

61b8-4d98-a3b7-2aa68d60c5e6'

o From the response received, make a note of the interval's name and use the support-

scheduler API to delete the scheduler interval by name (versus ID). If the name of the

scheduler interval was midnight, the call would look like the following cURL command:

curl --location --request DELETE

'http://localhost:48085/api/v1/interval/name/midnight

General

• New and updated Geneva docker-compose files have been created

o Portainer was removed from the release EdgeX compose files and made part of a

separate compose file for inclusion when needed but not by default

o Compose files will indicate Mongo, Logging service and the Support Rules Engine are

deprecated and to be removed in an upcoming release

o Export services are now archived and are removed from the compose files.

• Documentation updates for the platform have made

o Additionally, documentation was moved from RST to Markdown format

o This allows for much more pleasant looking documentation along with more searchable

documentation

• Move to Go 1.13

• Redis has been made the default reference implementation database for all service persistent

storage needs

o Mongo is still available for this release as an alternate implementation, but will be

removed in an upcoming release

o Mongo references are marked as deprecated in the code platform

• Pull Request (PR) templating has been setup for the project to improve comments on all PR

submissions

• The project implemented an Architectural Decision Records (ADR) process and document

template for exploring all architectural decisions in the project

o ADRs are stored in the edgex-docs repository in Github

(https://github.com/edgexfoundry/edgex-docs/tree/master/docs/1.2/design/adr)

• Removal of export services

o The EdgeX Export Client and Export Distro micro services have been archived and

removed from the Docker Compose files

o These services were deprecated with the Fuji release. Export services are replaced by

Application Services

• A common service bootstrapping module (go-mod-bootstrap) was developed and used in all

services (and SDKs)

o This bootstrapping provides a common way for all services to ingest configuration

information

• The config-seed service was removed in favor of service self-seeding. (documented via ADR

0005)

o This greatly simplifies service configuration and removes a service that only initialized

and then exited (leading to confusion on the part of users)

• The Logging service, Support Rules Engine service and use of MongoDB have been deprecated in

this release

o While still available, all will be removed in a future release

o The community felt that the central logging service no longer served a purpose as there

was rarely a need to log to a database

o There are often better logging aggregation tools available in the marketplace

o Services can either log to a file or to standard out, which were the more often used

logging options

o The decision to use Redis in place of Mongo has been in the works for some time

o Redis offers a reduced footprint, works in x86 as well as ARM environments with fewer

issues, and offers a better license model for an Apache 2 project

o The Support Rules Engine service was written in Java and was the last of the legacy

EdgeX services. EdgeX is now partnering with the Kuiper rules engine project which is

written in Go. This will make inclusion of a rules engine must smaller, faster and lighter

– plus Kuiper rules can be specified in SQL.

Core & Supporting Services

• The platform now supports passing an array of types (example, an array of integers) in EdgeX

readings from Device Services to Core Data and beyond

o This allows the collection of sensor data to maintain sensor values in a cohesive and

small object unit versus creating multiple readings to do the same work

o Support for the use of an array of integers in driving rules engines (Drools, Kuiper,

JSONLogic) has been deferred to the next release

• The platform has been updated to allow for secure Redis deployment (where credentials are

required by the platform or 3rd parties to access the database)

• The Drools rules engine – the last remaining Java service in EdgeX – has been deprecated (see

note on Kuiper below)

o For this release, as Drools can still be used, the service has been updated to allow

support-rules-engine (Drools) to always use local config since the config-seed has been

removed

• With automatic device provisioning added with this release (see Device Services below),

backlisting support was added to metadata to allow a device service to exclude onboarding

some devices automatically

• Reading type was added to Readings (via go-mod-core-contracts)

o This allows applications to have better understanding of sensor data without making a

request of Metadata to get the value descriptor

o Specifically: “valueType” was added while “mediaType” and “floatEncoding” were

added as optional properties to be included for floating point / binary data as

appropriate

https://docs.edgexfoundry.org/1.2/design/adr/0005-Service-Self-Config/
https://docs.edgexfoundry.org/1.2/design/adr/0005-Service-Self-Config/

• Separate registration and configuration modules were created so that these services could be

implemented by different implementations in the future and to allow for better separation of

concerns (see go-mod-registry & go-mod-configuration)

• MQTT & Redis Streams implementations of the message bus abstraction have been added in go-

mod-messaging

o This primarily benefits communications between core data and Application Services

today where messaging is used between the services, but the messaging module allows

for future messaging with varying implementations to be used by any service in the

future

o The EdgeX reference implementation for core to app service communications still uses

0MQ, but example MQTT and Redis Streams implementation have been documented

• A number of superfluous and unused properties on the value descriptor were removed

(uomLabel, formatting)

Device Services (and SDK)

• Changes associated with Config Seed removal & service self-seeding and support for array of

types as listed under Core

• Also added type to Readings as specified above in Core

• Implementation of dynamic device provisioning (i.e. automatic provisioning) in the Device

Service SDKs (and associated device services) to allow device services to automatically add a

device under management

o The implementation of dynamic device provisioning will vary per protocol/device type

o The SDKs provide the common boilerplate code that allows DS implementers to add this

feature more directly/quickly

• Released version 1.2.0 of SDK API in C (including a number of internal API changes)

• Released version 1.2.1 of SDK Go

• Provide the following new device services:

o REST Device Service

o Camera (for ONVIF cameras) Device Service

o Device Service BACnet in C

• Improvements were made to Device Services to address consistency in endian-ness when

generating float Readings (in Go v. C SDKs)

• Makefiles for C device services were added

o This makes builds more consistent between Go and C device services

Application Services (and SDK)

• Released version 1.1.1 of Application Functions SDK

• The project worked with the EMQX Kuiper rules engine project (open source) to provide a long-

awaited replacement to Drools

o Kuiper is a Go based rules engine using SQL to help define rules

o Use of Kuiper was added to Docker Compose files and integrated with the the App

Service Configurable

• A JSONLogic function was added to the App Functions SDK and into the App Service

Configurable

o JSONLogic provides a “poor mans” rules engine that allows operations to be triggered

based on pattern matches in the Event/Reading JSON data

o An example of JSONLogic use was added to app-services-examples (in edgexfoundry-

holding)

• Batch and Send functionality was added to the App Functions SDK and integrated into the App

Service Configurable

o This functionality allows EdgeX to collect sensor data readings and send them to a

northside endpoint at designated times (versus as they arrive)

o This allows EdgeX to be more easily used in environments where connectivity is

intermittent or subject to failures

• The App Functions SDK and existing Application Services were updated to integrate the new go-

mod-bootstrap

• The App Functions SDK and Application Services were updated to get and use secrets from Vault

o This functionality was critical to allow authenticated communications

o Per notes in Core, App Functions SDK and the Application Services were updated to use

the new go-mod-messaging abstraction

o This allows for 0MQ, RedisStreams or MQTT for message communications between core

data and Application Services

• New App Service Configurable profiles were added for using MQTT/RedisStreams alternatives

with the rules engine profile

• Added Insecure Secrets support

o Allows application services to run without Vault, but still using authenticated

MQTT/HTTP exports

• Added Exclusive Secret Store support for storing/retrieving app service specific (not shared)

secrets

• Added REST API to push exclusive secrets (specific to the application service instance) into Vault

• Updated App Functions SDK (and Application Services) to use the additional type information is

Readings from Core

• Provided new examples in edgexfoundry-holding repository for CloudEvent transformation

functions

System Management (and CLI)

• Blackbox tests were added to cover System Management Agent (SMA)

• Metrics and operation requests now execute concurrently

o That is requesting metrics or start/stop/restart operations against multiple services are

run in parallel were previously they ran sequentially

Security

• Improved security service bootstrapping

• Improved security testing (Blackbox tests of APIs through the API gateway)

• Security Issue Review (SIR) team meeting regularly and addressing critical security issues

(especially those identified by newly implemented Snyk reporting with this release (see DevOps

below)

• All services now get their service secrets from Vault

• Created a token provider service

o This service creates a unique Vault token for each individual service when it needs

secrets from Vault

• Set up expiration/revocation/rotation of all tokens used by EdgeX

• Upgrade to Kong 2.0

Dev Ops

• Move Jenkins build from JJB to Jenkins Pipelines

• Now uses Advanced Synk Reporting (CommunityBridge) to detect security issues and provide

vulnerability reporting

o Weekly reports now being generated from this tool and reviewed by the SIR team

• Semantic versioning is now used/implemented in build pipelines

• Improved use of tooling and procedures to include use of GitHub Project Tracker, automated

GitHub Issue label creation, and use of gitcommit linter

• New life cycle policies were implemented on Linux Foundation Nexus repositories.

• Developer documentation is now created via Pipelines

• Significantly improved performance of builds

o Specifically got ARM builds down to lower than 15 minutes

• Implemented use of Snap Global Library

• Established release automation policy and procedures (ADR 0007)

Test / QA (and documentation)

• Implemented the first of backward compatibility testing

o This will allow minor (dot) releases to check for any non-backward compatible changes

in the future

• Started use of TAF tests to replace Postman / Neuman testing in the future.

o This work included setup of TAF testing architecture and framework and TAF test code

organization/repos

• Began EdgeX integration testing

o This testing will be significantly increased in the future

o The first integration tests check the correct flow of data from device service sensor data

collection through to Application Services export

• Blackbox testing collaborative work as added for Application Services and Device Services

(previously these services did not have blackbox tests)

• As part of EdgeX’s collaborative work with fellow LF Edge Project Akraino, EdgeX blackbox tests

were successfully run on Akraino/ELIOT blueprint and validated in the Akraino lab environment

• EdgeX documentation moved from RST to Markdown

• The EdgeX documentation site has been updated and enabled with Google Analytics

• EdgeX moved API documentation to Swagger documentation (OpenAPI 3.0)

o API Documents are now available on Swagger Hub

EdgeX UI

• The EdgeX project combined and united its two UIs into a single reference user interface

o As part of this work, the UI was significantly cleaned up and improved

• The new UI includes

o Tools to use and configure the App Service Configurable

o Improved interface to add, update, remove schedules (for the Scheduler Service)

o Removed all tools using the now archived Export Services

Vertical Solutions

• Held a hackathon in China with more than 130 registrants

• Conducted the first EdgeX virtual hackathon with the help of Topcoder

o This event had over 80 registrants and 20 projects competing

Open Horizons

• As a subproject under EdgeX, OH had its initial code contribution completed

• It successfully achieved LF Edge Stage 1 acceptance and is now a separate project

• Is in the process of developing its own automated build pipelines and testing utilizing EdgeX

DevOps assistance

List of supported connectors
EdgeX Foundry application services (north side connectors) and device services (south side connectors)

release on an independent schedule – although they must be compatible with the general EdgeX

release. The list of device and application services below will work with Geneva (either currently or at

the suggested timeline).

South side (Device Services)
Open Source Device Services

• Modbus (TCP/RTU) in Go

• Virtual Device in Go

• SNMP in Go

• MQTT in Go

• BACnet (IP & MSTP) in Go

• ONVIF Cameras in Go

• REST in Go (NEW with Geneva!)

• Bluetooth in C (summer 2020)

• BACnet (IP & MSTP) in C (summer 2020)

• OPC-UA in C (summer 2020)

• Grove C (summer 2020)

Commercially Available Device Services through community members

• File Exporter in C

• BLE in C

• Zigbee in C

• GPS in C

• CAN in C

• MEMS in C

• EtherCat in C

• Profinet in C

• EtherNet/IP in C (summer 2020)

• CanOpen in C (summer 2020)

• OPC-UA Pub/Sub in C (summer 2020)

• ONVIF in C (summer 2020)

North side (Application Services)
Available functions (as part of the SDK) for application services

• AES Encryption

• GZIP Compression

• ZLIB Compression

• MarkAsPushed

• PushToCore (new and experimental)

• Device Name Filter

• Value Descriptor Filter

• Batch

• JSONLogic Filtering

• XML Conversion

• JSON Conversion

• MQTT(S) Export

• HTTP(S) POST Export

Example Open Source Application Service Connections

• Azure IoT Hub

• Amazon IoT Core

• IBM Watson IoT

• Cloud Event Transformation

• For a more complete list of examples see project documentation.

https://github.com/rsdmike/edgex-docs/blob/appservices/docs_src/examples/AppServiceExamples.md

