Go/Arm CI/Build Environments – special meeting, 10/26/17
Agenda
· What does our Arm and Go CI/Build environments need? How do they differ from the Java ones?
· What do our Arm and Go test environments need? How do they differ from the Java ones?
· What impact to the code bases do these additional build/CI environments bring (example of one we already talked about is get rid of ZMQ due to C/C++ library issue).
· Cavium and Linaro have offered up potential environments. Do either, both, or others work for us? Can we target one to start?
· Do we need to worry about Arm32?
For background, these are the notes from Andy Foster (great job – thanks Andy!)
Below is a summary of yesterday’s meeting between Cavium (Gorka Garcia, Fede Claramonte), the Linux Foundation (Jeremey Phelps, EdgeX DevOps chair) and IOTech (Andy Foster, EdgeX QA/Test chair) to discuss the addition of ARM64 support into the EdgeX build/test process.

1. Cavium (Gorka, Fede) provided a status update of the EdgeX ARM64 build/test work they have undertaken. They have successfully used Cavium’s internal ARM hardware to build and run ARM64 EdgeX microservices and would now like to start the process of integrating this work into the EdgeX CI pipeline.
2. Main focus of the discussion was around what was needed (server(s), tool chain, hosting etc.) to extend the current EdgeX CI pipeline to fully support ARM builds. Currently LF does not have an ARM environment that can be used by the EdgeX project. The options for acquiring the required build/deployment environment are:
a. Lease 3rd party hosted solution with additional costs to the project.
b. Cavium are willing to provide a build/deployment server (which includes tools/compilers required) that can be hosted by the LF at a cost (Jeremy is going to investigate the cost).
Meeting Discussion
[bookmark: _GoBack]What do we need and where do we start?
Gorka: Go can do cross compiling. We wouldn’t need different platforms
Also investigating Dockerfile – possible to do them on Intel and use for ARM. Would only contain Go binary. Could generate everything from single platform.
Testing is different story.
Cavium can provide box free – issue would be scalability. Gorka needs to discuss with IT where that box would be. Would prefer it is hosted in site in CA.
Potential Issues? C/C++ library calls are issue.
Ryan – build binary statically links so no problems in new environment
Drasko – we have those in our makefiles. Just a few flags that could be easily applied. Just tell me what format – to provide information for Go in general. Short primer would be great.
Action Item: Drasko to start to provide what Mainflux has to Jim to start contributor guide
Trouble with Docker on Arm – you must use specialized build
Gorka – go has the ability to build for the platform (with special flags). With Docker containers – same issue, you have to have special Dockerfile for Arm
Two environments or one?
Gorka – personal opinion: build on PC and cross compiling. Have one environment. Multi-part Docker being investigated
Drasko – usual practice to use PC/Intel to get power and not have separate environment. Only problem is testing
Drasko - Can we use Qemu (https://www.qemu.org/) for testing? Could run all our tests on this emulator. This makes for scalable architecture all on Intel.
Gorka – I am not sure about performance. Testing – one performance, two detecting bugs.
Andy – could unit tests be done on emulator and black box done on real hard? Allow more reuse of pipeline.
Drasko – one thing to consider is to test on actual hardware before release? Arm resources are going to be harder to come by.
With virtual environments we can walk before we run.
Brad – test on slow and fast hardware as well. Stuff breaks on slower CPU. Mostly MIPS and Arm – there are timing problems that get hidden.
Drasko – time to start thinking about to move Go to Github. Mostly code belongs to community as soon as possible.
Arm32?? Do we need an Arm32 test environment?
Gorka - From Cavium – we don’t have an offering on this kind of platform. But using Go it is trivial to produce.
Drasko – may start with 64 and let community do the work for 32 if necessary.
Wrap up
Actions to discuss with LF and DevOps Chair (Jeremy)
1. Set up of LF Go build (using work already done by Cavium, Mainflux, and Dell teams) on x86 but using Qemu to test
2. Produce Arm64 artifacts and Docker containers from this environment (provided work from Cavium proves successful).
3. Is it possible to run BlackBox tests created by IoTech in this environment to prove functionality?
4. Look at native platforms at Cavium and Linaro (cloud) to do more performance tests as step 2 and to check timing issues (per Brad’s comments)
5. Look at alternative native platforms at Cavium or Linaro for longer term native builds that are more performance
General consensus on approach. Walk before we run.
Contents from Zoom Text Chat during conversation
From Dejan Mijic to Everyone: 09:27 AM
Dejan from Mainflux here, just as an addendum to what Drasko just said: Semaphore CI specifies its build through bash scripts, which allow us to customize pipelines in whatever way we need.
Pros for semaphore:
Free for open source projects, customizable, and quite friendly to parallel builds (you can extract any amount of steps and run them in parallel).
Regarding the testing in go, couple of items can be very useful: table-driven tests as a good general recommendation, ory-am’ dockertest library (https://github.com/ory/dockertest) as nice utility for writing integration tests.
There’s library called Testify (https://github.com/stretchr/testify) which is quite helpful in writing clean, understandable tests.
From Tyler_Cox to Me: (Privately) 09:41 AM
qemu
From Dejan Mijic to Everyone: 09:41 AM
QEMU
From Andrew Foster to Me: (Privately) 09:44 AM
Jim I will stay logged on but have to take a customer call. Will re-join if I finish in time.
c. Alternatively Gorka is going to look into the possibility of Cavium hosting the server themselves and providing remote access to the project.
3. The current x86 CI pipeline relies on being able to dynamically fire up VMs on demand. Jeremy is going to investigate changes required to also support a more static configuration using Cavium’s server.
4. We also discussed timing and rollout and concluded that following needs to happen:
a. Resolve ARM64 server hosting/accessibility question.
b. Complete work to build out the existing x86 CI pipeline including integration of “Black Box” tests into the process.
c. Once (a) and (b) have been sorted then the work to setup an ARM64 build/test pipeline can move ahead. Cavium confirmed that they are happy to assist with any of this work.
