

Go Working Group – 10/17/2017
Members of Dell, Canonical, Cavium, Mainflux, LF in the meeting
Old business
Style Guidelines
What are the code styles/guidelines everyone is using and what should we use.
From last meeting:
· Janko’s Action – check on what types of analysis are provided
Janko was not available for the first half of the call, so we’ll push to next meeting
· Jim Action – draft the style guidelines for eventual Go Contributors Wiki Page by next meeting.
Completed – everyone is encouraged to take a look and provide any feedback, corrections, additions. See https://wiki.edgexfoundry.org/display/FA/Contributor%27s+Guide+-+Go+Lang
Libraries and tools
What does everyone use and why? Are there alternatives? Are there libraries / frameworks to be avoided and why?
From last meeting:
· Tony was going to check into what Canonical uses.
Gorilla
· Jim Action – write up contributor page on approved/discourage lists, and process.
Completed – See https://wiki.edgexfoundry.org/display/FA/Contributor%27s+Guide+-+Go+Lang
Vendoring
Vendoring – what should we use and should it be the same for all.
From last meeting
· Decision by the group was to use Glide. Jim added to the draft contributor page.
Go Lang Version
From last meeting
· Action for all - what version(s) are you targeting, and what versions could you work with and not work with.
· Tony – issue is where you get Go from. System package (with security fixes), versus container artifact – then we need to worry security updates
· Canonical using 1.6 for that reason (free security updates)
· Need to be careful that any of the core packages are compatible with all (v 1.6)
· Need Mainflux (and others input). Hold this item for next meeting
Additional Topics
Single versus multiple repos (as with Java)
From last meeting
· Drasko Action – volunteered to provide more background on uses, arguments pro/con, any open source projects following
· Tony: What do we do about core domain? Figure that out before deciding on single versus separate. Too early to decide yet?? Get a little further with services.
· Drasko doing this as part of export client micro service – making proposition via example
· Biggest issue – tight coupling of repos (libraries that are shared across services)
· Jim There appear to be two issues being combined here:
· 1. Do we need reusable libraries that can be used across micro service (example: core domain library)?
· 2. Does EdgeX get put into a single GitHub repos with different Go folders for the different micro services, or do we have multiple repos – one per micro service like we did in Java world?
· On the library question – do we have libraries?
· Drasko suggests that micro service architecture might suggest everything is completely independent/decoupled. So no - you wouldn’t have libraries.
· Tony: Yes – so long as the libraries don’t introduce tight coupling
· Jim: is that the case now?
· Ryan - May be some tight coupling in Go Metadata that are specific to MongoDb – may need some refactoring
· Drasko – we need to avoid a lot of work for no gain/benefit – but may need some research on shared libraries in micro service architecture. What are others saying/doing
· Agreement that we’ll continue to research/discuss
· On the issue of Single vs Multiple Repos question
· Tony - Repo tool from Google as interim solution to consider
· Boran – Glide or other tool could help
· Tabled this for more discussion going forward

NATS.io
· Action item – set up call with NATS for the group sometime later this fall (later Oct/early Nov) to learn more.
New Business
Open Source the Code
Getting teams’ Go Code into the open source repos
· Legal/scan requirements – Jim looking into faster/better ways to get this accomplished or work arounds (with LF and with Dell legal).
· We recognize this is a hold up item if Dell shared libraries are needed
· Please contact Jim if you need access to the Dell code.
· It is in everyone’s best interest to get this into open source quickly.
Go Device Service & DS SDK work
· How to use Dell go packages when not released yet
· Need DS or DS SDK first?
· Go Virtual device service
· Tabled the discussion for next meeting as Tony had to leave the meeting early
ARM Build Environment
· Not strictly a Go issue, but relevant to this community
· Recommend meeting to discuss build environment, who owns, how setup, etc.
· Jim Action: Meeting to be set up for next week
· Fede – issue not to use C extension (Arm64 – cause for concern compiling)
· Ryan – possible ZMQ library – Ryan checking; Fede thinks so
· Drasko – agrees that ZMQ has C binding; alternative – Nano message that uses Go native implementation (form same author of ZMQ) or GRPC (supported in Java and Go)
· Drasko – ZMQ has other issue – message semantics/format through ZMQ (serializing Java versus JSON).
· Tyler – Already have fix in place for serialized object issue. We just need to upstream fix / issue in github issue and fix on Java side. Jim and Tyler action items
· [bookmark: _GoBack]Nano similar to ZMQ, but GRPC different approach but better supported. Drasko prefers GRPC.
· Let’s pick this conversation up at the next meeting, but it sounds like we need to replace ZMQ in Go implementation.
Status update
· Drasko – The client export service are done; Cavium is working on export distro but in Drasko github repo and move to EdgeX repos.

[bookmark: DocumentMarkings1FooterFirstPage]

[bookmark: DocumentMarkings1FooterEvenPages]

[bookmark: DocumentMarkings1FooterPrimary]

