
Geneva (version 1.2) marks the 6th community release of EdgeX Foundry and was formally released in May 2020.
In addition to a number of new features (described here), Geneva also represents efforts to help improve the
overall performance and reliability of the EdgeX platform.

This report is intended to be a regular part of each release going forward; providing EdgeX users with information
they can use to guide their solution development and deployment while also assisting the EdgeX development
community to target future performance improvements and testing needs.

The tests were run using the following hardware platform: Intel – Dell Gateway 3002 (Atom E3805 processor
@1.33GHz with 2GB RAM, 8GB disk, running Ubuntu 18.04 LTS)

Raw performance data underlying this report is provided here.

EdgeX Foundry
Performance Report
Geneva Release
01 August 2020

 www.edgexfoundry.org

https://www.edgexfoundry.org/release-1-2-geneva/
https://docs.google.com/spreadsheets/d/131AVzDQk0Bq8Y3_NePScoP2PPVzwxYBe2fuztG3jetA
http://www.edgexfoundry.org

Deployment Options
The EdgeX Foundry platform is comprised of a collection of microservices. While a number of services are used in almost all deployments of the platform, the specific collection of services used
are dependent on the use case, solution architecture, and user discretion.

EdgeX provides flexibility in its architecture that offers many options for deployment and use. The EdgeX microservices are designed to be location independent so can be distributed between
computing nodes where necessary, however the EdgeX Core services are usually expected to be ran on all nodes. In very austere environments, a deployment many only include a device
service and a few core services.

Therefore, this report provides resource usage based on the “general” deployment and “minimal deployment”. The general deployment includes all those services used together as envisioned by
the original architects of the platform and inclusive of one example device service.

Specifically, the general deployment includes the following services and infrastructure:

2

Service EdgeX Service Name Required or Optional
Consul edgex-core-consul Optional – configuration can be obtained from local file

Database edgex-redis A database is required and Redis is the default implementation

Core Data edgex-core-data Required

Core Metadata edgex-core-metadata Required

Core Command edgex-core-command Optional – only required in actuation use cases

App Service Configurable edgex-app-service-configurable-rules Optional – for pipeline data processing and exporting to application endpoints

Support Notifications edgex-support-notifications Optional – services do not have to notify via central service

Support Scheduler edgex-support-scheduler Optional – services do not have to use a central scheduler (Device Services embed their own)

Device Virtual edgex-device-virtual Optional – any number of device services can be connected. Device Virtual serves as the representative example

Service EdgeX Service Name EdgeX Required or Optional
Database edgex-redis A database is required and Redis is the default implementation

Core Data edgex-core-data Required

Core Metadata edgex-core-metadata Required

Device Virtual edgex-device-virtual A deployment would include at least one device service and the virtual device service serves as the representative example

The minimal deployment includes a subset of services that support a basic deployment:

2

Service Executable and Image Size (Footprint)
The EdgeX microservices are typically implemented in Go or C and then compiled into an executable which has a size,
otherwise known as footprint, as it sits on disk.

Additionally, each microservice executable, along with a base operating system, any required configuration and supporting
infrastructure, can be “containerized” for easier deployment and orchestration with the other EdgeX microservices. As an
example, the EdgeX microservices are built into Docker images for deploying as Docker containers. Each Docker image also
has a footprint size as it sits on disk. This is typically much larger as it incorporates a base OS, infrastructure, configuration,
etc, but as described above can greatly simplify deployment because it adds platform independence.

Depending on the use case, a user of EdgeX may choose to deploy EdgeX in either containerized or non-containerized form.
The raw executables could also be used to deploy and orchestrate EdgeX using an alternative mechanism. Both the non-
containerized “Executable” and containerized "Image” footprint data is reported here.

3

Footprint in MB Image

Microservice Footprint Executable
edgex-core-consul 139.26 N/A

edgex-core-data 23.80 15.65

edgex-core-metadata 14.42 14.41

edgex-core-command 12.99 12.98

edgex-support-notifications 14.45 13.12

edgex-support-scheduler 13.12 13.12

edgex-app-service-
configurable-rules

29.84 21.18

edgex-device-virtual 20.84 15.23

edgex-redis 29.78 N/A

TOTAL 298.0

General Deployment Footprint

Footprint in MB Image

Micro service Footprint Executable
edgex-redis 29.78 N/A

edgex-core-data 23.80 15.65

edgex-core-metadata 14.42 14.41

edgex-device-virtual 20.84 15.23

TOTAL 89.0

Minimal Deployment Footprint

CPU Usage
The CPU usage of each container was measured on startup of the service. It is measured as a percentage of CPU available
as reported by the Docker Engine. Because the CPU characteristics of the different chip architectures vary, the percentage
of CPU usage can differ widely. CPU usage on the Intel Atom Processor (E3805 1.33GHz 1MB L2 cache) is around 15% -
inclusive of infrastructure elements (database, configuration/registry, etc.).

Microservice CPU usage at startup (%)
edgex-redis 0.47

edgex-core-data 1.98

edgex-core-metadata 1.87

edgex-device-virtual 0

TOTAL 4.32

Minimal Deployment CPU Usage

Future Consideration: In general, the services consume a lot of CPU as they startup and so the measure of usage at startup can be a good upper
bound for many services. However, future performance tests will also test the CPU usage periodically throughout a period of time and at peak sensor
data ingestion and device actuation times.

General Deployment CPU Usage
Microservice CPU usage at startup (%)
edgex-core-consul 2.29%

edgex-core-data 1.80%

edgex-core-metadata 2.01%

edgex-core-command 1.74%

edgex-support-notifications 1.70%

edgex-support-scheduler 1.52%

edgex-app-service-configurable-rules 0.15%

edgex-device-virtual 3.60%

edgex-redis 0.76%

TOTAL 15.5%

4

Memory Usage
Again, the memory usage of each container was measured on startup of the service. It is measured in MB used as reported
by the Docker Engine. Memory usage, in a containerized environment, is around 56MB on the Intel platform (inclusive of
infrastructure elements).

Microservice Memory usage at
startup (MB)

edgex-redis 2.14

edgex-core-data 5.11

edgex-core-metadata 5.94

edgex-device-virtual 6.49

TOTAL 31.0

Minimal Deployment Memory Usage

Future Consideration: In general, the services consume various
amounts of memory during operation. Future performance tests will
also explore the memory usage at peak usage times such as during
sensor data ingestion and device actuation.

General Deployment Memory Usage

Microservice Memory usage at
startup (MB)

edgex-core-consul 17.75

edgex-core-data 5.11

edgex-core-metadata 5.94

edgex-core-command 3.67

edgex-support-notifications 4.30

edgex-support-scheduler 4.39

edgex-app-service-configurable-rules 5.98

edgex-device-virtual 6.49

edgex-redis 2.14

TOTAL 56.0

5

6

Data Export

Recording of the time it takes to send EdgeX data from
the “south side” (sensors) through the platform to the
“north side” (applications). The measurement includes the
time it takes the virtual device service to create the Event/
Reading, send it to (and through) Core Data, and have
the Application Service read and prepare the data for a
northbound system. The event is extracted from the Core
Data supplied event message topic, sent to its designated
endpoint, and marked as “pushed” in Core Data.

The total average data export time for this scenario is
measured as 35ms.

Methodology
The following notes describe how the performance data
described in this report was captured. The services were
run with their default configurations and the Virtual Device
was allowed to run and produce sensor data in its default
manner (generating data every 30 seconds for a variety of
mimicked sensors).

The CPU and memory usage data was captured from
Docker Engine via docker stats after successful start-
up of EdgeX using the release Docker Compose files.
Data export testing was run 15 times – that is generating
15 event/readings through Core Data to the Application
Services layer via the Virtual Device Service.

Operational Latency

Startup and Ping Operations

Currently, the startup (a.k.a. bootstrap) time and response to the HTTP ping request are the only two operational performance
measures collected across all services. Additionally, the time to export the data to an endpoint is also measured.

Microservice Startup Time (Binary) Startup Time (Container+Binary) Ping (ms)
edgex-core-data 1.31185939 s 35.652928829193115 s 14.631

edgex-core-metadata 1.431470976 s 30.986926794052124 s 8.435

edgex-core-command 787.06282 ms 36.832406759262085 s 11.033

edgex-support-notifications 4.281586174 s 29.65292477607727 s 9.812

edgex-support-scheduler 6.117744992 s 30.341880798339844 s 9.155

edgex-export-virtual 3.607480699 s 44.42702794075012 s 11.271

TOTAL 44.42702794075012 s

The time to pull the Docker container image, create the container and start all of the EdgeX containers is significantly higher
– especially on more resource constrained platforms. The time to pull, create and start EdgeX containers on the 2GB (RAM)
Intel platform is just under a minute.

Copyright © 2020 The Linux Foundation®. All rights reserved. The Linux Foundation has registered trademarks and uses
trademarks, including for EdgeX Foundry. For a list of trademarks of The Linux Foundation, please see our Trademark Usage page.
Linux is a registered trademark of Linus Torvalds. Privacy Policy and Terms of Use.

Have you got any questions?

This document was produced by IOTech Systems
– the Edge Software Company whose products
include Edge Xpert which is an enhanced,
productized and commercially-supported
implementation of EdgeX Foundry.

If you have questions about this report or if you
need more information on IOTech or Edge Xpert,
email info@iotechsys.com or visit the website
www.iotechsys.com

Contact Us
For general information about Edge X, EdgeX
Foundry, or membership inquiries, please email
info@lfedge.org

Visit our website at

www.edgexfoundry.org

Geneva Release
The EdgeX v1.x series of release include important new
features as well as improvements and hardening of the
existing EdgeX functionality. Highlights of the Geneva
release include:

• Dynamic or automatic device on-boarding – for
protocols where it makes sense, this allows EdgeX
to automatically provision new sensors and have the
sensor data start to flow through EdgeX

• • Alternate messaging support – where applicable, Alternate messaging support – where applicable,
allows adopters to use any messaging implementation allows adopters to use any messaging implementation
under the covers under the covers of EdgeX to include MQTT, 0MQ, or
Redis Streams

• Better type information is associated to sensor data –
allowing analytics packages and other users of EdgeX
sensor data to more easily digest the data and aid in
transformations on the data

EdgeX Foundry is an open source, vendor neutral, flexible, interoperable, software platform at the edge of the network,
that interacts with the physical world of devices, sensors, actuators, and other IoT objects. In simple terms, EdgeX is edge
middleware - serving between physical sensing and actuating "things" and our information technology (IT) systems.

The EdgeX platform enables and encourages the rapidly growing community of IoT solution providers to work together in an
ecosystem of interoperable components to reduce uncertainty, accelerate time to market, and facilitate scale.

• REST device service

• Batch and send export – allowing sensor data to
be sent to cloud, on-prem or enterprise systems at

designated times

• Support for MQTTS and HTTPS export

• Redis as the default DB – deprecating MongoDB
for license, footprint/performance, and ARM support
reasons

• Adding the Kuiper rules engine – a new rules engine
that is smaller and faster and written in Go which
replaces EdgeX’s last Java micro service

• Improved Security

• Interoperability testing

• Improved DevOps CI/CD – now using Jenkins
Pipelines to produce EdgeX Foundry project artifacts

mailto:info%40iotechsys.com?subject=RE%3A%20EdgeX%20Performance%20Report%20-%20Fuji%20Release
http://www.iotechsys.com
mailto:info%40lfedge.org?subject=RE%3A%20EdgeX%20Performance%20Report_Fuji%20Release
http://www.edgexfoundry.org

