

Oil & Gas Business Cases

Alberto Dellabianca - October 2017

Agenda

- Business Context
- Use Cases & Requirements
- Edge Vision
- Proposal for Next Steps

EDGE X FOUNDRY **Business Context** edgexfoundry.org | @edgexfoundry

Upstream Process

- Projects with long lifespan (20-30 yrs)
- Automation and sensors in all phases from drilling to production
- Traditional control systems and related architecture are dominant
- IIOT adoption is slower compared to other industries

Onshore Drilling

- Rig moving from one well pad to the other by road
- 1-2 months of activity for a single well
- Sensors, control systems and automation in place
- On-site optimization services as well as remote monitoring

Offshore Drilling

- 2-3 months of activity for a single well
- Advanced Sensors, control systems and automation with extensive safety features
- Different type of rigs based on water depth and other conditions

Fixed Rig

Jack-up

Semisub

Drilling Ship

Well Intervention & Stimulation

- Quick interventions (1-3 weeks per well)
- Each mobile unit with its own control system
- Frac Spreads for pressure pumping
- Coiled Tubing services
- Wireline services

Artificial Lift

- System to help the well produce liquids
- Can stay onsite for the duration of the well (10-20 years)
- Surface and subsurface permanent components
- Local PLC in surface cabin

Points of attention

- Fields are in remote areas, the software stack tends to become antiquate, difficult to upgrade and secure → remote manageability
- Challenging interoperability in the field between entities (Operators, Service Providers, Contractors) → standardization
- Business model not cost effective, redundant/overlapping Hardware and Software
 microservices with plug-n-play architecture

EDGE X FOUNDRY

Use Cases & Requirements

Current EdgeX – very flexible architecture

Areas of attention

Scalability

10-1000 channels

Well

200-1000 channels

Onshore Facility

3000-10000 channels

Offshore Facility

5000-50000 channels

Onshore Rig

1000-5000 channels

Offshore Rig

10000-100000 channels

50-300 channels

Frac Spread

5000-10000 channels

Cybersecurity

- Oil & Gas not the most loved industry on our planet. <u>Hacktivists targeted it publicly</u>
- Nearly 70% of Oil & Gas companies were attacked in 2016
- Some of the risks faced in the case of a successful attack:
 - Plant shutdown
 - Equipment damage
 - Oil spills resulting in environmental damage
 - Safety measures violation resulting in injuries and death
- Geopolitics in the picture
- Without strong security foundations, EdgeX cannot even be considered

Poor Connectivity

- Operating in remote zones with bandwidth constraints
- Satellite (very expensive) is the only option available in many cases
- Bandwidth assigned is often times low (e.g. 16kbps in North America to stream 1000 channels to the cloud)
- Local queuing mechanism to sync data as soon as the connection comes back after an interruption
- Possibility to backfill data in reverse order (most updated first)

edgexfoundry.org |

Low Latency

- Many cases require a quick response from remote monitoring centers
- Latency < 3 sec is needed end-to-end (from data acquisition @edge to visualization on remote web portal). This means EdgeX latency from South to North shall be less than 500ms
- Direct streaming to the cloud bypassing Core Data?

Remote management

- Limited digital skills onsite
- Push remote updates on the configuration (update Core Metadata)
- Push updated docker containers for binary upgrades on one of the microservices
- Central web portal for all admin & remote management activities
- Kubernetes?

Reliability

- Downtimes may have big safety and economic consequences
- High Availability architecture (East-West connections) with 2 nodes in failover
- Scheduled (e.g. every night) backup of all Core-Metadata config to the cloud to enable an easy swap of hardware in case of replacement with a new provisioned EdgeX

Local Sharing

- Local OPC UA server exposing Core Data and Core Metadata
- This is necessary to share information to non-edgeX devices
- Interoperability between different entities

High-Frequency

- Vibration Sensors with data at 10khz
- High speed protocols such as DDS are used. EdgeX Device Service for Open DDS?
- Why not using a Time Series Database as Influxdb within Core Data? That would provide
 native time-series functions used for local apps and analytics (Influxdb is written in Go, runs
 well in docker, supports batch writes and has a REST API to interact with)

Analytics

- An offshore rig generates between 1TB and 2TB data per day
- It's impossible to send all data to the cloud → edge analytics
- R and Scikit learn Python engines may be too heavy to run on an edge device
- Possibility to save the model as PMML (Predictive Model Markup Language) which is a defacto standard
- Have a microservice to run a lightweight (Go? C/C++?) machine learning engine accepting the PMML model as config input as well as the reference to core data inputs to feed the model

Visualization

- Local visualization solution is required
- Grafana is a perfect match (open source, built in Go, runs on docker, web-based, light footprint, very fast, lots of features, extensible with plugins)
- Would need a Grafana "Datasource plugin"
- Where to save config data?

Legacy Systems

- OPC DA is a first class citizen now and for years to come
- Running OPC DA on Linux is challenging... New device service using OpenOPC which leverages on pyro?

Modbus Serial still present in many cases

Asset Template

- Goal: declare a specific instance of EdgeX to be an instance of a specific asset template (e.g. Pump model A1287B) and be able to push the relevant set of microservices and configuration.
- The EdgeX asset template defines:
 - Which microservices are needed
 - Default configuration for microservices
- The central EdgeX Console should have a catalog of templates and be able to create instances based on this template
- Be able to upgrade or push the same changes to all EdgeX devices sharing the same asset template

App Store

- EdgeX to become for Edge devices the same as "Android" for smartphones
- Commercial apps built by service providers and available on app store hosted by the project (an app could be the artificial intelligence model to optimize the asset)
- Business model which stimulates commercial players to contribute to the ecosystem (similar to GE Predix)

East/West Interoperability

- Microservices able to invoke other microservices running on a different EdgeX instance
- Shall this be done through a broker?
- This could be useful for different service providers interacting in the field on behalf of the operator

Industrial Sharing with non-EdgeX devices

OPC UA Server and Modbus TCP Slave to expose data to other non-EdgeX devices

Al Agents

- This would be the ultimate step to achieve full data-driven automated optimization
- Al Agents on different EdgeX devices talking to each others and negotiating the best course of action based on the overall process

Proposal for TSC

- Project Lead Alberto Dellabianca (National Oilwell Varco)
- Other Company to join this project OEM, Service Providers, Operators. Few contacts so far, no official committment
- Deliver Specific Market Requirements to Other WGs Presentation posted on wiki is a generic starting point. Specific requirements will be contextualized in EdgeX perspective (scorecard for each category / microservice)
- Create Reference Architecture for Specified Vertical / Use Case Define 3 reference implementations: Single Asset,
 Onshore Facility, Offshore Facility
- Develop Unique Source Code Outside of Core Osisoft PI Export, Native TSDB Target California Release?

Liaison with Appropriate SDOs and Consortia - Society Petroleum Engineers, Universities

Specific collaborations with other WGs

Security Services

Provide requirements

Export Services

Export Service to Osi PI **Export Service to influxdb**

Support Services

Test streaming analytics in high throughput scenarios

Core Services

Native TSDB collaboration?

Device Services

Provide requirements on which industry protocols are missing Test high throughput scenarios with OPC UA

System Services

Provide requirements

Collaborate on mockups for a local management console

Define use case and workflow for backups to cloud

Reference Architecture

- Specify a reference architecture for 3 Macro **Scenarios**
- Recommended specs (minimum hardware & dockercompose)
- Test beds

Why OSI PI Export Service?

- Enterprise historian used by majority of operators
- The platform itself comes from the refining industry and later on expanded in Upstream

Why a native TSDB?

- Massive amount of sensor and control data (ingestion volume and velocity)
- Need a local efficient persistent storage for long periods (offline scenarios)
- Need for native time series functions for local analytics
- Solution: local influxdb (Open Source, written in Go)
- 2 Options
 - Northbound Export service to influx as if it was an external microservice
 - Modify the Go version of "Core Data" in order to support as a backend influx (alternative to Mongo)

