
edgexfoundry.org | @edgexfoundry

Technical Workshop

Day 1: June 1, 2017

edgexfoundry.org | @edgexfoundry

 Agenda

edgexfoundry.org | @edgexfoundry

Introductions

edgexfoundry.org | @edgexfoundry

High-Level Project
Organization

edgexfoundry.org | @edgexfoundry

EdgeX Foundry Project Organization

•
•
•

edgexfoundry.org | @edgexfoundry

Project Documents

• Approved and Accepted (Changes made by the Governing Board)

• Project Charter - https://www.edgexfoundry.org/about/project-charter/
• Code of Conduct - https://www.edgexfoundry.org/about/code-of-conduct/

• Structure and Operations (To be developed by the membership)

• Technical Work in the EdgeX Foundry Project [Draft]
• EdgeX Foundry Project Principals [Draft]
• Working Group Charter Template [Draft]
• Project Lifecycle [Draft]
• Proposal Template for an EdgeX Project [Draft]
• Project Incubation Exit Criteria [Draft]
• Release Taxonomy [Draft]

https://www.edgexfoundry.org/about/code-of-conduct/

edgexfoundry.org | @edgexfoundry

Proposed TSC Working
Groups

edgexfoundry.org | @edgexfoundry

Proposed Baseline Working Groups
• Proposed groups align with key functional areas in platform architecture
• Inherent bleed between groups with alignment maintained via common APIs

Note: WGs need Chairs (drivers)

edgexfoundry.org | @edgexfoundry

 Core Architecture Workgroup
Overall Responsibilities
• Curate overall architecture and recommendations for technology

implementation
• Foundational APIs and native EdgeX data model
• Microservice deployment and inter-communication
• Optimize performance, reliability, scalability, extensibility and

platform independence
• Address needs of other working groups

edgexfoundry.org | @edgexfoundry

 Security Workgroup
Overall Responsibilities
• Core security architecture and functional requirements
• Features for securing host device and connected devices/sensors
• Threat modeling and penetration testing
• Recommendations on best practices for code implementation and

field deployment
- Idea with Security is to establish a baseline
- Tightly coupled with Core architecture, but managed under separate WG
- Main deliverables for WG include API’s, specs
- Discussion around liaising with other organizations; Provide a tangible codebase that leverages work of existing groups
- Define Use Cases to help shape first release
- Discussion item: Hyperledger as a security apparatus for IoT

edgexfoundry.org | @edgexfoundry

 System Management Workgroup
Overall Responsibilities
• APIs and reference implementation for the management and health

of the host system and connected devices/equipment
• Deployment and maintenance of EdgeX microservices (start, stop,

restart, update, provide status, configuration, etc.)
• Test integrations with 3rd party consoles

- Define lowest common denominator
- Built out reference services where it makes sense

edgexfoundry.org | @edgexfoundry

 Device Workgroup
Overall Responsibilities
• Interoperability between “southbound” connectivity protocols and Core

Services

• Device microservices that provide this connectivity

• SDK to create new Device Services, including various code implementations

• Working with security and system management workgroups to extend
functionality to connected devices

- Different SDK = Different languages
- Question on IPv6 > directed to Core WG as a discussion topic
- Whole architecture today is built to run in containers
- UI: Current code base is all headless

edgexfoundry.org | @edgexfoundry

Applications Workgroup
Overall Responsibilities
• Define MVP functionality (e.g. deployed microservices) for usable instance, associated performance and footprint

requirements

• "Northbound" Export Services for interoperability and exchange of data (with local applications, other edge/fog nodes and
cloud systems)

• Tools and SDKs to add additional integration capability in various formats

• Format/model transformations (Haystack, OPC-UA, etc.)

• API and performance needs of general applications such as edge analytics (CEP, machine learning), database, and other
“intelligence” integration that resides in EdgeX or is provided in coordination with backend systems

• “Fog” data orchestration

• Plugin new transformations, filters, encryption, compression, protocol connectors, etc.

- Discussion on modeling based around Use Cases

edgexfoundry.org | @edgexfoundry

Additional Key Project
Functional Areas

edgexfoundry.org | @edgexfoundry

DevOps (1/2)
Proposal: up-level to standalone working group
• Project and Software Development Management

• LF provides the infrastructure (tools) setup and support. The TSC is responsible for project + software development management
• Source Code Management

• LF provides and supports the tools -- e.g. GitHub setup, ongoing administration (adding new projects and maintainers). The
TSC/project maintainers are responsible for proper source code management.

• Code Review
• LF provides an inbound code management framework but code reviews are generally performed manually by the code

maintainers. Anyone in the community can provide code reviews; maintainers are responsible for final review and accepting or
rejecting contributions. The LF has set up an environment that publishes automated code testing results alongside developer
review and the community can contribute new automated tests.

• Bug Tracking
• This has been set up with GitHub. Bugs/Issues will be tracked using GitHub Issues; the TSC and community are responsible for

triaging and responding to issues as part of source code management.
• Communications Infrastructure

• Provided by LF and already set up: Email proxies as necessary (PR, Events, Membership, Info); initial Mailing Lists, Wiki (which
will be refreshed within the next 1-1.5 weeks with large content transfer from Dell, Rocket.Chat (developer forum)

https://lists.edgexfoundry.org/mailman/listinfo
https://wiki.edgexfoundry.org/
https://chat.edgexfoundry.org/

edgexfoundry.org | @edgexfoundry

DevOps (2/2)
Proposal: up-level to standalone working group
• QA and Testing

• Test processes, test cases, test frameworks, test platforms (suitable hardware/OS to run the tests on), tests (unit, integration, system, performance,
scalability

• Recommendation is for the project to form a Working Group to address. LF provides administration of virtual machine test platforms as part of CI
administration.]

• Continuous Integration
• Provided by LF: a Jenkins master integrated with GitHub , a dynamic pool of Jenkins worker minions that scales up or down to meet project demand and

Nexus Repository Manager. The LF will be taking the lead to implement a better release process than what was previously utilized; one that uses Nexus to
hold artifacts and help create and push new Docker containers into private Docker repos (and then Docker Hub). The EdgeX Community is welcome to
participate in the scoping/roll-out of the new process.

• Release Engineering and Management
• Provided by LF

• Systems Administration
• Provided by LF

• Inbound Code Scanning
• Initial scanning executed by Dell on seed contribution. Future code scanning will be enabled once the project budget is able to fund.

• Election of Code Maintainers for Initial Contributions
• Managed by TSC

edgexfoundry.org | @edgexfoundry

Quality Assurance
Also up-level to standalone working group?

• QA is a top priority to establish EdgeX as high quality resource as
foundation for application development

• Requires processes, procedures and systems to support
• Product management – requirements definition and management, product

roadmap development
• QA and testing processes – requirements analysis and design, test plan, test

cases, unit tests, integration tests, performance testing, scalability testing, soak
testing, platform/OS testing, release management

• Also requires strong link with DevOps (automation of the build, test,
release and continuous integration processes)

edgexfoundry.org | @edgexfoundry

Addressing Business Needs
• Enabling proprietary value-add around open interop core
• Multi-tenancy
• Meeting requirements of various stakeholders (IT, OT,

admins, installers, service personnel, etc.)
• Tracking entitlement and usage of proprietary

microservice licenses (e.g. enable pay-for-services
model)

• ?

edgexfoundry.org | @edgexfoundry

Community Engagement
• Consortia / standards bodies

• EdgeX in consortium test beds (IIC, OpenFog, etc.)

• Collaboration for better-together with protocol standards

• Developer Resources
• Discussion: Best place to post dev questions? Rocket.Chat, Mail Lists, Stack Overflow (would people be looking at SO, to answer questions)? Dev

questions come through multiple channels. Where does the community "live" > i.e. we don't want to recommend SO if nobody uses it anymore)

• Developer Training Videos
• Series of Live + Recorded Zoom sessions. Example topics include: Intro and high level architecture; Core Training; Base Service Frameworks

Training; Technical Getting Started; Debugging/Testing; Debugging/Testing with third party tools; Contribution Process, git, gerrit, and coding standards.

• University liaisons/research projects

• Event / conference participation
• Trade shows

• Plug-fests and hackathons

• Social media, blogs and 3rd party forums

- Decision to just leave Rocket.Chat to start. Can revisit pointing to SO at a later time

https://stackoverflow.com/search?q=edgex

edgexfoundry.org | @edgexfoundry

Commercial Enablement
Building on QA and internal DevOp, tasks required to make EdgeX fit to be consumed by commercial users.

• Support system – bug tracking system/support portal
• Product packaging – binary distributions and professional installation
• User Documentation – Installation Guide, Getting Started Guide, User Guide, API

Reference, Administration Guide
• Release notes – known issues, bug fixes, change summary, documentation links,

tutorial links, software license terms and conditions
• Extensive example code and tutorials
• Supporting training materials for use with customers and partners
• Dev kits

edgexfoundry.org | @edgexfoundry

Certification Program
• Certification program to be paid for by EdgeX project

membership funding and incremental certification fees
• Requires definition of process, selection of native data model,

certification spec and test jigs, etc.
• Project can go one of two paths:

a) Follow similar process/practice as
OCI: https://github.com/opencontainers/certification
b) Leverage outside resource (i.e. UnderwriterLabs)

• UI: relationship to OpenFog and IIC test beds, others
• Will discuss in a bit more detail on Day 2

Device Services to
accompany new

sensors/devices or to
accommodate brownfield
connectivity using choice

of protocol

Device
Services

Connectivity
Servers

Existing gateway stacks /
connectivity applications

Security
Services

Entire proprietary edge platforms
built on Interoperability

foundation

Export
Services

Edge
Analytics

Individual “North-side” Microservices

System Mgmt
Agennt

- Self-certification brought up as a need if project can scale
- Certification of People and Certification of Products both possibilities

https://github.com/opencontainers/certification

edgexfoundry.org | @edgexfoundry

For End of Day 2

• Discuss integration of key functional areas into Working Groups,
up-leveling DevOps and QA to standalone groups

• Create first-pass sub-projects
• Finalize draft TSC structure

edgexfoundry.org | @edgexfoundry

Overall Alignment on
Project Goals

edgexfoundry.org | @edgexfoundry

Platform Architecture

-

https://wiki.edgexfoundry.org/

edgexfoundry.org | @edgexfoundry

Current State of Project Seed
• Solid architecture
• Stable but heavy footprint
• Dockerized for ease of end user delivery
• No security features
• Limited system management features
• Some clean up items to be addressed
• Limited documentation – especially for the “Getting Started” types
• Single node system – doesn’t address east/west or extended fog

distributed system

edgexfoundry.org | @edgexfoundry

Proposal: Stabilize Current Base Before Creating
Alternative Implementations

• Explore alternative technology choices and code implementations in parallel
to stabilizing and optimizing current base

• Expedite definition of MVP Security and System/Device Management to
influence core to be implemented after key technology choices and
programming languages are established

• Stabilize Java-based Device Service SDK before adding more reference
device services and exploring alternative code implementations

edgexfoundry.org | @edgexfoundry

Proposed Near and Longer-Term Goals
Beta (Fall 2017)
• Clean up current code and optimize

footprint/performance

• Define foundational security and system management
requirements, implement MVP functionality

• Refine Device Services and Export SDKs

• Create additional reference device and export services

• Test/curate with various platforms (hardware and
operating systems)

• Establish and implement base Open Source QA
procedures

• Additional productization of Open Source code base to
enable community/commercial use

Production Enablement (2018+)
• Enable further footprint reduction via alternative code

implementations and embedded flavors

• Improve/expand south and north-side connectivity and
partnerships

• Advanced security and system management

• Explore real time and embedded versions

• EdgeX in the fog (east-west distribution,
load-balancing, failover, etc.)

edgexfoundry.org | @edgexfoundry

Proposed Key Milestones for Next 12 months

•

•

•

•

•
•

•

•
•

edgexfoundry.org | @edgexfoundry

Alignment on
Performance Needs

edgexfoundry.org | @edgexfoundry

Summary of Current State on Performance

• To date project priority has been to develop a highly extensible
architecture per the key tenets over performance and footprint

• Performance is highly relevant to use case including quantity and
function of deployed microservices

• Recent prototyping has improved on these numbers and shown
existing architecture can support drastically reduced footprint in a
typical use case

edgexfoundry.org | @edgexfoundry

Near Term Solutions for Performance
• Remove services (export, central logging, central config/registry, notifications, etc.) in constrained environments

• Lift: Small (configuration changes and some conditionals to operate with/without supporting services)
• Benefit: A device service or two, with core services and rules engine would run nominally on 2GB platform
• Negative consequences: Remove capability

• Combine services (e.g. combine core, metadata, and command) into one service
• Lift: Medium
• Benefit: Reduce footprint (POC still under development but estimate half the size for core services) and improved performance

given fewer REST calls
• Consequence: Reduce flexibility

• Use commercial Java Native Code Compiler to create native EXE from Java micro service JAR
• Lift: Small (long build process in excess of 2 hours, but does not require extensive developer work)
• Benefit: ~1/2 the start time, ~2x speed, ~3/4 the footprint of a normal Java service
• Consequence: $, commercial license needed to use the product

• Explore use of Mongo indexes to improve performance – especially around UI
• Combination of these efforts

edgexfoundry.org | @edgexfoundry

Longer Term Solutions for Performance
• Rewrite services in Go Lang or other language

• Lift: Large
• Benefit: Large reduction of footprint. Promising early prototype of Core Data (only 8MB memory, 8M footprint),

near instantaneous start times
• Consequence:

• Resources to develop
• Requires a compile for a specific target platform (can be done as part of a more complex build process)
• Availability of frameworks/tools hinders development

• Refactor Java code base to optimize for scale / performance
• Lift: Large
• Benefit: Retain the architecture and some code base
• Consequence:

• Resources to rework code base and tools/expertise to locate pockets of reduction
• How much smaller / faster could the Java microservices be?

Evaluation on Reducing Footprint
Keith Steele, IOTech

Micro Service Clean Up – Footprint & Performance (1)
• Java is resource heavy – current footprint roughly 7-8gb with full complement of

microservices, rules engine and local UI

• Optimum approach to reduce footprint/ optimize performance would to re-implement
some/all micro services in another programming language

• Micro service architecture, permits incremental replacement

• Initial research and POC’s suggest Go Lang would be a good choice; easy to implement a
web application, concurrency model, and fitting Docker container

• Estimated average footprint for each Go Lang based micro service is around 40 ~ 50 MB.
Each Java micro service is currently around 250 ~ 300 MB

• Possible exception - Device SDK optimally should be written in C, allowing the
integration of resource constrained devices at the edge and RTOSs that do not support
Go Lang or Java

Micro Service Clean Up – Footprint & Performance (2)
• Reducing the footprint can improve the performance as most CPU resource is handling garbage

collection

• The current implementation could be modified to use Undertow as the web container instead of
tomcat. It could reduce footprint by about 4MB for each micro service

• See
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto
-use-undertow-instead-of-tomcat and

• https://examples.javacodegeeks.com/enterprise-java/spring/tomcat-vs-jetty-vs-undertow-comparison-of-spring-
boot-embedded-servlet-containers/

• Continue analysis of breakdown of startup timings to understand where the time is consumed; identify
possible optimizations

• Continue investigating VM's like IBM j9 support multi-tenancy (running multiple applications in on
server JVM), this could be a quick way of reducing the JVM overhead – initial result look promising (see
next slide)

• Also potentially modify the micro services so can be co-located in a standard JVM

https://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-use-undertow-instead-of-tomcat
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-use-undertow-instead-of-tomcat
https://docs.spring.io/spring-boot/docs/current/reference/html/howto-embedded-servlet-containers.html#howto-use-undertow-instead-of-tomcat
https://examples.javacodegeeks.com/enterprise-java/spring/tomcat-vs-jetty-vs-undertow-comparison-of-spring-boot-embedded-servlet-containers/
https://examples.javacodegeeks.com/enterprise-java/spring/tomcat-vs-jetty-vs-undertow-comparison-of-spring-boot-embedded-servlet-containers/
https://examples.javacodegeeks.com/enterprise-java/spring/tomcat-vs-jetty-vs-undertow-comparison-of-spring-boot-embedded-servlet-containers/

Preliminary IBM J9 Performance and Footprint Results
• Test setup - Dell Latitude 3440 laptop, CPU: Intel(R) Core(TM) i7-4500U CPU @ 1.80GHz, RAM:

DDR3 8GB, OS: Ubuntu Desktop 14.04

• Test 1 - run EdgeX normally = start up time: 5 minutes, memory consumption: 6.4 GB

• Test 2 - re-build all Docker images of Java micro services based on IBM j9 with the Class Data
Sharing feature = start up time: 3 minutes, memory consumption: 1.7 GB

• Test 3 - re-build the Docker images again with Undertow instead of Tomcat. Result as in Test 2,
thus we don't need to replace the web container when using the Class Data Sharing feature
because it might only reduce the footprint by 4Mb

• Test 4 - removed logging and rules engine micro service = start up time: 2 minutes, memory
consumption: 1.5 GB

• Using the IBM J9 VM EdgeX could run easily on the Dell 5000 Gateway smoothly, and could run
on 3000 Gateway by e.g. disabling logging and rules engine

• Work ongoing

edgexfoundry.org | @edgexfoundry

Proposal: Focus on Soft Real Time for First Commercial
Offerings

edgexfoundry.org | @edgexfoundry

Recommendations

• Use short term fixes (one or combination) to optimize current code
base first

• Submit long term solutions as part of the technical roadmap to the
TSC

• Divide work up among community

edgexfoundry.org | @edgexfoundry

Performance Targets
• Need to define typical light, medium and heavy workloads (e.g. Light: Core Services and baseline Supporting Services,

one Device Service, one Export Service, no database, analytics or local UI?)

• What hardware target for Beta at light workload? Atom-class gateway w/ 2GB RAM? Raspberry Pi (ARM V8, 1GB
RAM)?

-

edgexfoundry.org | @edgexfoundry

Alignment on
Overall Requirements and

Design

(For group discussion to seed
deep dives in working groups)

edgexfoundry.org | @edgexfoundry

Core Architecture

edgexfoundry.org | @edgexfoundry

General Clean Up of Core
• Reduce footprint and latency of current code base
• Common baseline functionality for all services (include security and system

management APIs)
• Dynamic configuration change callbacks
• Dependency service retries
• More unit, integration and system tests
• ?

edgexfoundry.org | @edgexfoundry

Priority Platforms
• Target hardware hosts for test?
• What Linux and Windows variants?

edgexfoundry.org | @edgexfoundry

Native Data Model
• The EdgeX architecture can accommodate virtually any data input and output; however, order

to establish a certification program in the open source collaboration project there must be a
native data model established in Core Services

• During incubation of FUSE seed code Dell created a simple, flat model in order to be agnostic
to an eventual community-led selection

• Selection of data model will be an organic community effort, intent is to lock on a baseline by
Beta release

• Recommend we table this discussion until community is more familiar with code base.

edgexfoundry.org | @edgexfoundry

Container Orchestration
• Final reference solution should accomodate various container implementations (e.g. Docker,

Snaps, etc.)

• Expand on current Docker Compose reference implementation?

• Should explore Kubernetes

• Does this fit under system management working group?

• ?

edgexfoundry.org | @edgexfoundry

For Future Discussion:
Intersecting Key Tech Trends

• Blockchain
• LBS
• AR
• Voice
• Etc.

edgexfoundry.org | @edgexfoundry

Addressing Real Time/Near Real Time (2018+)

• Alternative implementations of microservices
(e.g. Go Lang, C)

• Consolidating microservices
• Use of better (QoS) and faster inter-service
communications like DDS

• Move to RTOS to support the platform for some
use cases

edgexfoundry.org | @edgexfoundry

Proposed Goals for Beta Release: Core Architecture
• Finalize technology choices
• Performance optimizations (footprint, latency, stability)
• Implementing Minimum Viable Product (MVP) security and system management features
• Establish native data model
• Alternative code implementations for microservices
• Plan for path to more real time
• Improve documentation
• ?

edgexfoundry.org | @edgexfoundry

Devices

edgexfoundry.org | @edgexfoundry

Discussion: Priority Device Services
• Current reference implementations

• BACnet
• Modbus
• MQTT
• BLE
• OPC-UA
• SNMP

• DISCUSSION: Priorities for Addition
• CAN bus
• ULE
• EnOcean
• OCF
• Thread
• Zigbee
• ?

edgexfoundry.org | @edgexfoundry

Proposed Goals for Beta Release: Devices
• Guidance on performance requirements
• Improve robustness of Java Device Services SDK (refactor/simplify)
• Inter-protocol interoperability
• Explore alternative language implementations for SDK (e.g. C)
• Additional protocol reference implementations for open source use (includes guidance on licensing

considerations)
• Define process/considerations for dev of proprietary Device Services with open SDK
• Improve documentation
• ?

edgexfoundry.org | @edgexfoundry

Applications

edgexfoundry.org | @edgexfoundry

Discussion: Priority Export Services
Current Reference Implementations
• MQTT
• Microsoft Azure MQTT

Discussion: Priorities for Addition
Standards
• Haystack
• OPC-UA
• ?
Proprietary / Commercial
• AWS / Greengrass
• Google IoT Core
• SAP HANA
• IBM Watson IoT
• ?

Additional proprietary implementations will be up to private companies.

edgexfoundry.org | @edgexfoundry

Addressing the “Fog” (2018+)
• Facilitate East-West capability

• Scale/Load balance across EdgeX instances
• Failover between EdgeX host systems
• Cluster of EdgeX node management

• Facilitate North-South capability
• Gateway (EdgeX) Device Service
• Gateway (EdgeX) to Gateway (EdgeX) export
• Export/integration with other node types

edgexfoundry.org | @edgexfoundry

Proposed Goals for Beta Release: Applications

• Guidance on MVP deployment and associated performance
requirements for applications

• Refine Export Services SDK
• Create additional export implementations
• Evaluate “fog” requirements including east-west data orchestration

as well as failover, redundancy and load balancing

edgexfoundry.org | @edgexfoundry

Security

edgexfoundry.org | @edgexfoundry

EdgeX Foundry Security Services – Proposed Approach

• EdgeX security services are envisioned to be architected in a fashion consistent with other
EdgeX services

• APIs define the fundamental capability
• Various implementations open to the implementer (some may be proprietary)
• A reference implementation should be provided for basic capability
• Use of open source technologies may be used to provide reference implementations

• Three security microservices are key to providing the bulk of EdgeX security capability
• Other security services are layered on top of these 3 services
• Details and APIs to be defined

-

https://wiki.edgexfoundry.org/display/FA/Architecture--Security

edgexfoundry.org | @edgexfoundry

EdgeX Foundry Security Services

…

edgexfoundry.org | @edgexfoundry

EdgeX Base Security Services
• Trusted Execution Service

• Attests executable code elements (from EdgeX) are legitimate, authenticated, and can be trusted
• Maintains a registry of trusted/uncompromised services
• May have some connection/integration to existing EdgeX Config/Registry service

• Identity Management Service
• Provides authentication and authorization services
• Verification that an entity is who/what it claims to be
• Governs what can an entity access (with regard to other EdgeX services)

• Key Management Service
• Generate, exchange, store, and destroy cryptographic keys

edgexfoundry.org | @edgexfoundry

Additional EdgeX Security Services
• Additional EdgeX Security Services may be required
• Most of these additional services would use or be based on the 3 base services
• Examples include

• Data Protection service – sign and encrypt data at rest
• Log Monitor service – monitor EdgeX logs for suspicious security activity and report/alert when

security violations are detected or suspected
• Message Protection service – sign and encrypt data in motion

• HTTPS and key management capability is envisioned to secure EdgeX REST communications
• Additional message protection services are envisioned to encrypt and protect data in other

message protocols used in EdgeX (MQTT, AMQP, DDS, etc.)
• Need to balance reference vs. opportunity for 3rd party value-add

edgexfoundry.org | @edgexfoundry

Proposed Goals for Beta Release: Security
• Agreement on security requirements and potential high-priority EdgeX Foundry threats that must be

addressed, establish key tenets
• Recommendation on MVP security service APIs
• Reference implementation for MVP services to include Key Management, Identity Management, Code

Validation services
• Assist in security integration to the security services in other / existing EdgeX microservices
• Develop security test plans and security testing procedures
• Documentation
• ?

edgexfoundry.org | @edgexfoundry

System Management

edgexfoundry.org | @edgexfoundry

System Management (1 of 2)
General Management of Host Hardware (need to define boundary of scope)

• Power Cycle
• Provide data about the operation and status/health of the host hardware
• Setup, configuration, and modification of Ethernet and wireless connections
• Support multiple platforms/OS (Linux, Windows, x86, ARM, …)
• Management of OS and BIOS likely out of scope but EdgeX must persist updates to underlying OS, I/O device drivers and BIOS

Management of Connected Devices
• Discovery of new devices
• Update Device Service
• Update device firmware
• Report on device status/health

EdgeX Supporting Software Management
• Install/uninstall, start/stop & configure databases
• Install/uninstall, start/stop & configure message brokers/message systems
• Base service implementation in all micro services
• Defines interface and API hooks for start, stop, restart, etc. of services

edgexfoundry.org | @edgexfoundry

System Management (2 of 2)
EdgeX Micro Service Registry & Management

• Recognize and report on installed EdgeX services
• Install/uninstall services
• Start/Stop services
• Report service health/status (heartbeat, revision, responsiveness, etc…)
• Update service (provide rollback in some cases)

Manage configuration (add, update, delete)
• Define the port a service runs on
• Seed service data (example: addressable for device services)
• Notify services of other service state changes
• Store/understand/manage microservice dependency information (example: point all services to new security service provider)
• Manage blacklist services (turn off a service for maintenance, etc.)
• Assist device services provision/remove new devices
• Discover new devices being connected

User interface to provide administration
• Create "single pane of glass" reference implementation for managing the host, connected devices and EdgeX leveraging existing standards
• Test integrations with commercial sys mgmt products (Dell Edge Device Manager, VMware Pulse, System Center, etc.)

edgexfoundry.org | @edgexfoundry

Proposed Goals for Beta Release: System Management

• Clear definition of what’s in scope for EdgeX vs. all 3rd party
• Establish key tenets for system management
• Recommendation for MVP system management services and APIs
• Assist with implementation of APIs in code base
• Create reference implementation for remote and local consoles
• Test EdgeX APIs with various 3rd party consoles
• Documentation
• ?

edgexfoundry.org | @edgexfoundry

Working Group
Breakouts

edgexfoundry.org | @edgexfoundry

Breakout Organization
Main Room:
• Combined: Core Architecture, Applications and Devices

Two Satellite Rooms:
Security
System Management

edgexfoundry.org | @edgexfoundry

Breakout Considerations
Tips:
• Leverage starter slides in previous section and incorporate feedback from today’s group alignment.
• Discuss in context of current code base and your potential contributions
• Consider other key functional areas like QA, DevOps, Commercial Enablement, Business Needs, etc.
• Balance tactical and strategic project goals

Checklist for Readout on Day 2
• Overall working group priorities, key tenets
• Recommendations on key technologies to consider
• Recommended MVP functionality for Beta (prioritized for organization into sprints)
• Suggested key milestones on the path to Beta
• Recommended action plan for first 30-day sprint
• Proposed resourcing / member contributions
• Proposal for final TSC structure, working groups and sub-projects
• What you need from other working groups

edgexfoundry.org | @edgexfoundry

Technical Workshop

Day 2: June 2, 2017

edgexfoundry.org | @edgexfoundry

Working Group
Readouts

edgexfoundry.org | @edgexfoundry

Breakout Readouts
Working Groups to report on based on the checklist.

• 60 minutes: Core Architecture, Applications, Devices
• 20 minutes: Security
• 20 minutes: System Management

30 minutes to assimilate output

edgexfoundry.org | @edgexfoundry

Next Steps

edgexfoundry.org | @edgexfoundry

TSC Structure

Core

Ed
uc

at
io

n

Applications Security System
Management Devices

C
om

m
er

ci
al

En

ab
le

m
en

t

Working Groups

Potential Projects

In
te

ro
p

(Io
TX

)

C
er

tif
ic

at
io

ns

En
ga

ge
m

en
t

DevOps? QA?

?

P
er

fo
rm

an
ce

/
B

en
ch

m
ar

ki
ng

edgexfoundry.org | @edgexfoundry

Maintaining Stability in Interop Framework
• Open discussion

edgexfoundry.org | @edgexfoundry

Future Certification Program
• Timeline?

• Next steps?

edgexfoundry.org | @edgexfoundry

Resources
• Open discussion on resourcing and code contributions

edgexfoundry.org | @edgexfoundry

Meeting/Development Structure
• Meeting Cadence/Structure
• Development Sprints

edgexfoundry.org | @edgexfoundry

Summarize and Adjourn

