
Export Service to Osisoft PI
Description

Osisoft PI is the most used historian in the Oil&Gas industry. EdgeX needs to be capable to export data to such a platform.

The target is to deliver this feature as part of California Release.

Requirements

Use PI Web API (restful API) for Data Ingestion
Authenticate the EdgeX node through Basic Authentication
Create new tags in PI Archive
Export throughput up to 1,000 events/second from each EdgeX node
Local buffering and retry mechanism with resilience to network downtime
Local logging of error messages & events through EdgeX Log service

Design

This capability can be implemented by cloning the current EdgeX HTTPS REST export feature and modifying it accordingly to send messages in a format
accepted by . This is an approach that has been adopted by other IIoT platforms as well.PI Web API

Assumptions
There is a 1-to-1 relationship between EdgeX measurements and PI Tags. A table to map the datatypes shall be defined.
There is a 1-to-1 relationship between EdgeX events and PI Tag. A table to map the datatypes shall be defined.
The corresponding PI Tag will have a name that is obtained by concatenating the three following pieces (with "." in between)

Tag Prefix as defined in the next section "Step 1 - Configuration"
Device Name (as what is specified in EdgeX Metadata - this must be unique)
Measurement/Event Name (as per what is specified in EdgeX Metadata - this must be unique within the same device)

An example of PI Tag Name will be "deployment001.deviceABC.measurement005"

Step 1 - Configuration
Parameters that define the configuration of the export service and should be set through Export Client API calls:

PI Web API Endpoint (e.g. https:// /piwebapi)mypiwebapiendpoint
PI Archive Name (e.g.)mypiarchive
Export interval in milliseconds (e.g. 1000) - as an alternative this could be batch size
Username (e.g.)piwebapiuser
Password (e.g.)piwebapipassword
Tag Prefix (e.g.)deployment0001
Datapoint(s) that will be exported to corresponding PI tag(s)

As part of the registration to export client, it would be appropriate to verify connectivity/authentication.
Make a GET request to https:// /piwebapi/dataservers with the basic authentication header as per mypiwebapiendpoint piwebapiu

/ser piwebapipassword
The result will look like the below. If there is an entry with "Name":" " then the registration can be considered mypiarchive
successful and the of the archive should be stored in EdgeX for usage in following stepsWebId

https://techsupport.osisoft.com/Documentation/PI-Web-API/help.html

{
 "Links": {},
 "Items": [
 {
 "WebId": "s0LOyweq8d50GzEPfROu0oqQMTAuMTI3LjkyLjEzNA",
 "Id": "7ab0ec2c-1daf-41e7-b310-f7d13aed28a9",
 "Name": "10.125.23.143",
 "Path": "\\\\PIServers[10.125.23.143]",
 "IsConnected": false,
 "ServerVersion": "",
 "Links": {
 "Self": "https:// /piwebapi/dataserversmypiwebapiendpoint

",/s0LOyweq8d50GzEPfROu0oqQMTAuMTI3LjkyLjEzNA
 "Points": "https:// /piwebapi/dataserversmypiwebapiendpoint

",/s0LOyweq8d50GzEPfROu0oqQMTAuMTI3LjkyLjEzNA/points
 "EnumerationSets": "mypiwebapiendpoint/piwebapi/dataservers

"/s0LOyweq8d50GzEPfROu0oqQMTAuMTI3LjkyLjEzNA/enumerationsets
 }
 },
 {
 "WebId": " ",s0AAAAAAAAAAD_____vIRf4ATkRQ
 "Id": "00000000-0000-0000-ffff-ffffbc845fe0",
 "Name": " ",mypiarchive
 "Path": "\\\\PIServers[mypiarchive]",
 "IsConnected": false,
 "ServerVersion": "",
 "Links": {
 "Self": "https:// /piwebapi/dataserversmypiwebapiendpoint

",/s0AAAAAAAAAAD_____vIRf4ATkRQ
 "Points": "https:// /piwebapi/dataserversmypiwebapiendpoint

",/s0AAAAAAAAAAD_____vIRf4ATkRQ/points
 "EnumerationSets": "https:// /piwebapi/dataserversmypiwebapiendpoint

"/s0AAAAAAAAAAD_____vIRf4ATkRQ/enumerationsets
 }
 },
 {
 "WebId": "s0YLwbWI-V8kmIc_EPhJ9d-AVVNBLUgwTDY1UzE",
 "Id": "581bbc60-958f-49f2-8873-f10f849f5df8",
 "Name": "pisrv002",
 "Path": "\\\\PIServers[pisrv002]",
 "IsConnected": false,
 "ServerVersion": "",
 "Links": {
 "Self": "https:// /piwebapi/dataservers/s0YLwbWI-mypiwebapiendpoint

",V8kmIc_EPhJ9d-AVVNBLUgwTDY1UzE
 "Points": "https:// /piwebapi/dataservers/s0YLwbWI-mypiwebapiendpoint

",V8kmIc_EPhJ9d-AVVNBLUgwTDY1UzE/points
 "EnumerationSets": "https:// /piwebapi/dataserversmypiwebapiendpoint

"/s0YLwbWI-V8kmIc_EPhJ9d-AVVNBLUgwTDY1UzE/enumerationsets
 }
 }
]
}

One of the following 3 errors may occur during this verification:
Unable to reach the endpoint (may be due to different reasons such as connectivity, firewall blocking port 443, DNS
resolution...). In this case a timeout is necessary to pop out an error after X amounts of seconds/retries
401 Unauthorized (Wrong credentials, either username or password)
mypiarchive does not exist in the list of registered PI Archives (or it may be that the server is registered with the
hostname while the specified endpoint is an IP address)

Step 2 - Initialization
The following steps need to be executed after the initial configuration, any time the configuration changes or whenever the Export
Distribution service restarts.

Verify if the tags are already existing in the PI Archive.
For each configured tag, the following query must be executed.
GET https:// /piwebapi/search/query?q=name: &scope=pi:mypiwebapiendpoint tagname mypiarchive
If the tag already exists, the reply will look like:

{
 "TotalHits": 1,
 "Links": {
 "Next": "https:// /piwebapi/search/query?mypiwebapiendpoint

",q=name%3A &scope=pi%3A &count=10&start=10tagname mypiarchive
 "First": "https:// /piwebapi/search/query?mypiwebapiendpoint

",q=name%3A &scope=pi%3A &count=10tagname mypiarchive
 "Last": "https:// /piwebapi/search/query?mypiwebapiendpoint

"q=name%3A &scope=pi%3A &count=10&start=0tagname mypiarchive
 },
 "Errors": [],
 "Items": [
 {
 "Name": " ",tagname
 "Description": "Some Description",
 "MatchedFields": [
 {
 "Field": "name"
 }
],
 "ItemType": "pipoint",
 "AFCategories": [],
 "UniqueID": "\\\\{044de274-8d72-4cb6-839b-9e415e793dd8}\\?3",
 "WebId": "P0dOJNBHKNtkyDm55BXnk92AAwAAAAU1JWR0RZUExNT1NJRDAzX

",ENEVDE1OA
 "UoM": "deg. c",
 "DataType": "float32",
 "Links": {
 "Self": "https:// :443/piwebapi/points/mypiwebapiendpoint P0d

"OJNBHKNtkyDm55BXnk92AAwAAAAU1JWR0RZUExNT1NJRDAzXENEVDE1OA

 },
 "Score": 13.62607
 }
]
}

In this case the WebId of the tag must be read and stored in EdgeX in order to be used in further iterations. If the tag
does not exist, the reply will look something like:

{
 "Links": {
 "Next": "https:// /piwebapi/search/query?q=name%mypiwebapiendpoint

",3ACDT15&scope=pi%3Amypiarchive&count=10&start=10
 "First": "https:// /piwebapi/search/query?q=name%mypiwebapiendpoint

",3ACDT15&scope=pi%3Amypiarchive&count=10
 "Last": "https:// /piwebapi/search/query?q=name%mypiwebapiendpoint

"3ACDT15&scope=pi%3Amypiarchive&count=10&start=0
 },
 "Errors": [],
 "Items": []
}

In this case the tag will have to be created with the following command
POST https:// /piwebapi/dataservers/{webId}/points where WebId is riferred to the target mypiwebapiendpoint
dataserver. The payload of the POST request should look like the following:

{
 "Name": "deployment001.deviceABC.measurement005",
 "Descriptor": "Some description as per EdgeX Metadata",
 "PointClass": "classic",
 "PointType": "Float32",
 "EngineeringUnits": "",
}

Step 3 - Data Export
At each Export Interval as per defined in the configuration, a new POST call should be fired as below:

POST https://mypiwebapiendpoint/piwebapi/streamsets/recorded with the following JSON payload containing a section for each
WebId corresponding to the tags

[

{"WebId":"P0dOJNBHKNtkyDm55BXnk92AAwAAAAU1JWR0RZUExNT1NJRDAzXENEVDE1OA",

"Items":[

{"Timestamp":" ","Value":15308.23},2018-01-16T20:31:50.267Z

{"Timestamp":" ","Value":15308.88},2018-01-16T20:31:51.234Z

{"Timestamp":" ","Value":15308.04},2018-01-16T20:31:51.357Z

{"Timestamp":" ","Value":15309.15},2018-01-16T20:31:51.678Z

{"Timestamp":" ","Value":15309.65}2018-01-16T20:31:51.907Z

]

},

{"WebId":"P0dOJNBHKNtkyDm55BXnk92A3OM1AAU1JWR0RZUExNT1NJRDAzXEZPR0hPU
",k4uQ1JJTw

"Items":[

{"Timestamp":" ","Value":15308.67},2018-01-16T20:31:50.653Z

{"Timestamp":" ","Value":15308.86},2018-01-16T20:31:51.124Z

]

},

]

A successful request will provide a "202 Accepted" response
The activities (request/reply) should be logged through EdgeX log service

Possible improvements for the next version (Delhi Release):

Possibility to perform data backfill (From StartTimestamp to EndTimestamp) - this may require an architectural change in Export Services
Manage conflicts with overlapping tag names between different EdgeX deployments
Support Kerberos authentication (Will need to specify in the configuration Keytab, Kdc, Principal and Realm)

Possible improvements for the long term:

High throughput up to 100,000 events/second from each EdgeX node by using an ad-hoc to send messages to OMF connector PI Connector
Relay with OMF

Code

To be updated.

Current status

Waiting for Go Export Client & Distribution to support HTTPS REST which is mandatory for this export services to work

http://omf-docs.readthedocs.io/en/v1.0/
https://pisquare.osisoft.com/thread/33427-pi-omf-relay
https://pisquare.osisoft.com/thread/33427-pi-omf-relay
https://github.com/mgjeong/device-opcua-java

	Export Service to Osisoft PI

