
Delhi
The Delhi release is the third formal release of EdgeX Foundry. Key features for the Delhi release will include:

The initial system management capability
Device Service SDKs in Go and C (along with some demonstration device services)
The next wave of security features to include access control to grant access to appropriate services, and improved security service bootstrapping.
Refactored and improved Go Lang microservices
Options and implementation plan for adding abstraction for database (and other resources)
A potential plan to replace the existing underlying database
Plans for export service replacement with application services
Plans for supporting binary data through CBOR
Provide an EdgeX UI suitable for use in exploring several instances of EdgeX
Provide a performance testing strategy and plan

Release Information

Provide a system management agent (SMA) that coordinates control plane information and management of EdgeX micro service metrics, 
configuration, and control (start, stop, restart) through a central service endpoint.
Provide system management APIs into each EdgeX micro service in support of system management needs and facilitate the SMA.
The SMA and micro service level management APIs serve as the first building blocks to manage EdgeX and its associated devices/sensors in the 
future.
Device Service SDKs in Go and C will replace the Java device service SDK and allow the last Java micro services to be replaced (allowing to 
improve footprint and performance)
Documentation and sample device services to assist developers replace existing large/slow Java device services, along with adding new device
/sensor device service connectors.
In California, some of the initial security services were put in place - namely the reverse proxy to protect the micro service APIs and a secure 
store for storing EdgeX secrets (like database passwords, certificates, etc.)  Additional security capability will be added on top of these initial 
building blocks in Delhi.  New security features to be added include:

Use an ACL plugin to provide access control to micro services
Adding various EdgeX secrets to the secure storage
Improve the secure bootstrapping

The Scheduling service remains the last of the Java micro services in California (other than the device services and rules engine).  This service 
will be replaced in Delhi with a Go implementation.  Device services and the scheduling service will share a common metadata schema.
Core, supporting and export services are refactored to offer better code organization, abstraction from certain resources (offering better flexibility) 
and improve unit testing.
A design and implementation plan will be provided with Delhi (for Edinburgh implementation) to add support for binary data (namely via CBOR) 
through device services, core data, and export services
Improve the configuration of EdgeX

Refactor config-seed to only load the configuration appropriate to the application setting based on profiles (i.e. development, production, 
production docker or snap, etc.)
Replace the simple key/value pair organization of service configuration with more structured and hierarchical configuration as supported 
by Consul
Upgrade Consul and improve the configuration seed
Implement a process to move the latest configuration into the config-seed through the CI process

While MongoDB has been the foundational EdgeX data persistence store since its beginning, concerns around its license, ARM 32 support, and 
size/performance have the community looking into possible alternatives.  At the very least, the platform should  more easily support the swap of 
the database by 3rd parties.  The Delhi release will provide designs and plans for implementation in the Edinburgh release of:

Better database abstraction architecture
A potential change or addition in database support (potentially replacing MongoDB)

The existing export services will not scale because additional code must be added to the client and distribution services with each additional 
transformation, filter, formatting, or endpoint need.  Further, it does not allow for eliminating filter, transformation, or endpoint distribution code 
when it is not needed.  Delhi will include a design and implementation plan (for Edinburgh) to eventually replace the export services with a new 
application services (as initially specified in the document  ).here
An user interface will be provided to assist manage EdgeX instances, demonstrate device actuation, and visualize the sensor data collected.

Release Dates

Freeze Date:  Oct 22, 2018

Release Date:  Nov 16, 2018

Release Docker Compose

https://github.com/edgexfoundry/developer-scripts/tree/master/releases/delhi/compose-files

Version0.7.1 Release Docker Compose file:  https://github.com/edgexfoundry/developer-scripts/blob/master/releases/delhi/compose-files/docker-compose-
delhi-0.7.1.yml

https://wiki.edgexfoundry.org/download/attachments/329472/Proposed%20Export%20Service%20Refactor.pdf?version=1&modificationDate=1527202967000&api=v2
https://github.com/edgexfoundry/developer-scripts/tree/master/releases/delhi/compose-files
https://github.com/edgexfoundry/developer-scripts/blob/master/releases/delhi/compose-files/docker-compose-delhi-0.7.1.yml
https://github.com/edgexfoundry/developer-scripts/blob/master/releases/delhi/compose-files/docker-compose-delhi-0.7.1.yml

	Delhi

