
1.  

2.  
3.  
4.  

5.  
6.  
7.  

8.  
9.  

10.  
11.  
12.  

Persistence Plugin Architecture (Proposal v0.0.1)

Revision History
Date Who What

20190102 Andre Initial draft

20190103 Trevor Added clarifications

20190106 Andre v0.0.1

20190117 Trevor Added Discussion Notes

** Updated Discussion Notes **
On 17-Jan-2019 we discussed the following proposal in the Core Working Group call. Full recording and meeting minutes can be found . The current here
plan of action for Edinburgh is as follows:

We will defer usage of plugins until a later development cycle, Fuji at the earliest.
For Edinburgh, we are committed to supporting Mongo and Redis at the persistence layer for relevant services within the . These edgex-go repo
implementations will be a part of the edgex-go source tree, as they were for the Delhi release.
Andre at Redis has committed to closing any necessary gaps to support all relevant services with a tentative delivery of 15-Mar-2019
An alternate approach to plugins was proposed by ObjectBox (see #corewg-persist channel on Slack) which would utilize Go modules to 
externalize 3rd party implementations. Ivan / Markus at ObjectBox agreed to provide a POC for the group demonstrating this approach. Once that 
is ready, we will cover it in a subsequent Core Working Group call.
Resources at Microsoft and Intel are conferring with regard to the  detailing the lack of plugin support for Windows. Hoping for traction open issue
here leading to acceptance for a future Go version.

Summary
The Persistence Plugin Architecture is intended to address decoupling persistence implementations from the EdgeX Foundry code base. The core-data, 
core-metadata, export-client, support-logging and support-notifications services all currently rely on database persistence. Today (Delhi release), 
persistence implementations are part and parcel of the  repo. As a result, adding a new persistence implementation or updating an EdgeX Golang Services
existing implementation requires all team members to have knowledge of every supported persistence platform as well as access to an installation of each 
in order to fully test any changes. New capabilities must be added to every persistence implementation before they can be called complete. This is not 
scalable. For a future (Edinburgh) release, the goal is to move persistence implementations into their own repos so they can be maintained independently 
of the EdgeX code base. 

The proposed architectural solution utilizes  .Go Plugins

Within each service, a configuration value will drive which persistence plugin to load, similar to . This value can be the same across all what we do now
services or even different for every service should a customer feel that one or another platform is best suited to the role the service plays in their 
environment. Each service defines an interface for the necessary database operations ( , ) and then a vendor's plugin must core-data core-metadata
conform to and support that interface.

User Stories
As a persistence implementation provider ( ), I want a mechanism so that I can add a new persistence implementation to the EdgeX a provider
platform.
As a provider, I want a mechanism for sustaining a persistence implementation so that I do not rely on EdgeX platform releases.
As a provider, I want a mechanism for configuring my implementation without knowing the rest of the EdgeX platform configuration.
As a provider, I want the EdgeX platform build scripts to consolidate my build-time and run-time requirements so that I can maintain my 
implementation independently of the EdgeX platform.
As a provider, I want an API contract so that I know what to implement.
As a provider, I want an API contract so that I can unit test.
As a provider, I want EdgeX platform testing to be able to certify implementation so that EdgeX platform users will have the confidence to use my 
implementation.
As an EdgeX platform maintainer ( ), I want a default persistence implementation so that I can maintain CI/CT.a maintainer
As a maintainer, I want providers to create reasonable defaults so that I can add them into CI/CT.
As an EdgeX platform user ( ), I want to select one or more persistence implementations for use by the various EdgeX services.a user
As a user, I want the option to run the platform along with the selected persistence implementation(s) directly on the OS.
As a user, I want the option to run the platform along with the selected persistence implementation(s) in a containerized deployment.

Design
The design has two roles: the provider role and the platform role.

https://wiki.edgexfoundry.org/display/FA/Core+Working+Group
https://github.com/edgexfoundry/edgex-go
https://github.com/golang/go/issues/19282
https://github.com/edgexfoundry/edgex-go/tree/master/internal/pkg/db
https://golang.org/pkg/plugin/
https://github.com/edgexfoundry/edgex-go/blob/c347d877f4c6e0e72abeafb2f517201421ad9c87/internal/core/data/init.go#L142
https://github.com/edgexfoundry/edgex-go/blob/master/internal/core/data/interfaces/db.go
https://github.com/edgexfoundry/edgex-go/blob/master/internal/core/metadata/interfaces/db.go


Provider

The provider maintains their plugin in their own repository along with the build scripts to create the plugin, the EdgeX build fragments needed by the 
platform build, and the EdgeX Compose file fragments needed to create the EdgeX Compose file.

Repo Organization

The provider repo follows the  . In addition, providers are encouraged to maintain and distribute prebuilt binaries of their plugin.Go standard project layout

Path Description

`pkg/NAME.so.VERSION` The plugin lives in the pkg directory where  is the plugin name and VERSION follows NAME Semantic 
.Versioning 2.0

`pkg/NAME-docker-compose-fragment.
VERSION.yml`

Addition to the Docker Compose file for the persistence service (aka the DB). Optional.

`pkg/NAME-config.VERSION` Persistence service configuration file. Optional.

Note  and   must match across plugin, compose file fragment, and configuration file.NAME VERSION

Platform

The platform role is further divided into config time and run time. During config time, the configuration of the platform drives the consolidation of the Docker 
Compose file, possibly downloading the plugin, and possibly downloading the persistence configuration file. It is then assumed at run time, the compose 
file has mounted the volume where the persistence configuration file lives and the plugin is in a path known by the startup scripts.

Config Time

At config time, the plugin, the Docker Compose file fragment, and the persistence configuration file may need to be downloaded from the repo. This is 
obtained from the service `.toml` file or by querying Consul.

EdgeX Configuration

[Databases]
  [Databases.Primary]
  Host = 'localhost'
  Name = 'coredata'
  Username = 'scott'
  Password = 'tiger'
  Port = 1234
  Timeout = 5000
  Type = 'NAME.so'
  Version = '1.0.0'
  PluginSource = 'https://github.com/some-provider/edgex-plugin/blob/master/pkg'

In addition to overloading the   key, two additional keys are added. The plugin, compose file fragment, and configuration file are copied to `cmdType
/SERVICE/plugins`.

Key Description

Type The Type key currently drives a switch statement in the service initialization code. If the key is not recognized in as a known value, it is 
assumed to name the plugin.

Version The Version key is used to complete the name for the plugin as well as the name for  other dependencies.the

PluginSou
rce

The PluginSource key provides the path to the plugin as well the path for the other dependencies. It can be a URL or a local file path.

The compose file fragment is merged into the Docker Compose file for the service. If there is a configuration file it is mounted as part of the compose file.

https://github.com/golang-standards/project-layout
https://semver.org/
https://semver.org/


pkg/docker-compose-fragment.yml

  some-provider:
    image: some-provider:alpine
    ports:
      - "1234:1234"
    container_name: edgex-some-provider
    hostname: edgex-some-provider
    networks:
      - edgex-network
    volumes:
      - data:/data
    depends_on:
      - volume

Run Time

The assembled Docker Compose file will start the persistence service, if needed. When started, the EdgeX service attempts to use the Databases.
 key to reference a known builtin database. When the value is not recognized it will now attempt to load a plugin.Primary.Type

Acceptance Criteria

MVP

Provider implementations in their own repo
EdgeX platform config time scripts to create Docker Compose file
Updated black box tests

v.Next

Provider certification
Provider included in platform CI/CT

Reference Patterns
The basis of the requirements came out of looking at how others have solved this challenge. Also, note Vladimir Vivien's helpful article on "Writing Modular 

".Go Programs with Plugins

Azure IoT Edge

Azure IoT Edge is organized around independently configured modules (aka containers) that are grouped to form a solution. Each module is described 
independently and then combined into a solution with a deployment manifest. For example, the RedisEdge module is described using the following module

. .json

https://medium.com/learning-the-go-programming-language/writing-modular-go-programs-with-plugins-ec46381ee1a9
https://medium.com/learning-the-go-programming-language/writing-modular-go-programs-with-plugins-ec46381ee1a9
https://docs.microsoft.com/en-us/azure/iot-edge/about-iot-edge


module.json

{
    "$schema-version": "0.0.1",
    "description": "RedisEdge",
    "image": {
        "repository": "$CONTAINER_REGISTRY_ADDRESS/redis-edge",
        "tag": {
            "version": "1.0.0",
            "platforms": {
                "amd64": "./Dockerfile.amd64",
                "arm32v7": "./Dockerfile.arm32v7",
                "arm64v8": "./Dockerfile.arm64v8"
            }
        },
        "buildOptions": []
    },
    "language": "javascript"
}

To build a solution with this module, a deployment manifest is constructed using scripts that parse a deployment template which enumerates the modules 
along with their configuration. Note the use environment variables; these are populated from a  file that is not part of the source repository..env



deployment.template.json

{
  "modulesContent": {
    "$edgeAgent": {
      "properties.desired": {
        "schemaVersion": "1.0",
        "runtime": {
          "type": "docker",
          "settings": {
            "minDockerVersion": "v1.25",
            "loggingOptions": "",
            "registryCredentials": {
              "myiotregistery": {
                "username": "$CONTAINER_REGISTRY_USERNAME",
                "password": "$CONTAINER_REGISTRY_PASSWORD",
                "address": "$CONTAINER_REGISTRY_ADDRESS"
              }
            }
          }
        },
        "systemModules": {
          "edgeAgent": {
            "type": "docker",
            "settings": {
              "image": "mcr.microsoft.com/azureiotedge-agent:1.0",
              "createOptions": ""
            }
          },
          "edgeHub": {
            "type": "docker",
            "status": "running",
            "restartPolicy": "always",
            "settings": {
              "image": "mcr.microsoft.com/azureiotedge-hub:1.0",
              "createOptions": "{\"HostConfig\":{\"PortBindings\":{\"5671/tcp\":[{\"HostPort\":\"5671\"}], \"
8883/tcp\":[{\"HostPort\":\"8883\"}],\"443/tcp\":[{\"HostPort\":\"443\"}]}}}"
            }
          }
        },
        "modules": {
          "RedisEdge": {
            "version": "1.0",
            "type": "docker",
            "status": "running",
            "restartPolicy": "always",
            "settings": {
              "image": "${MODULES.RedisEdge.amd64}",
              "createOptions": "{\"HostConfig\": { \"PortBindings\": { \"6379/tcp\": [ { \"HostPort\": \"6379\" 
} ] } } }"
            }
          }
        }
      }
    },
    "$edgeHub": {
      "properties.desired": {
        "schemaVersion": "1.0",
        "routes": {},
        "storeAndForwardConfiguration": {
          "timeToLiveSecs": 7200
        }
      }
    }
  }
}



Which results in the following deployment manifest

deployment.json

{
  "modulesContent": {
    "$edgeAgent": {
      "properties.desired": {
        "schemaVersion": "1.0",
        "runtime": {
          "type": "docker",
          "settings": {
            "minDockerVersion": "v1.25",
            "loggingOptions": ""
          }
        },
        "systemModules": {
          "edgeAgent": {
            "type": "docker",
            "settings": {
              "image": "mcr.microsoft.com/azureiotedge-agent:1.0",
              "createOptions": ""
            }
          },
          "edgeHub": {
            "type": "docker",
            "status": "running",
            "restartPolicy": "always",
            "settings": {
              "image": "mcr.microsoft.com/azureiotedge-hub:1.0",
              "createOptions": "{\"HostConfig\":{\"PortBindings\":{\"5671/tcp\":[{\"HostPort\":\"5671\"}], \"
8883/tcp\":[{\"HostPort\":\"8883\"}],\"443/tcp\":[{\"HostPort\":\"443\"}]}}}"
            }
          }
        },
        "modules": {
          "RedisEdge": {
            "version": "1.0",
            "type": "docker",
            "status": "running",
            "restartPolicy": "always",
            "settings": {
              "image": "andresandboxregistry.azurecr.io/redis-edge:1.0.0-amd64",
              "createOptions": "{\"HostConfig\": { \"PortBindings\": { \"6379/tcp\": [ { \"HostPort\": \"6379\" 
} ] } } }"
            }
          }
        }
      }
    },
    "$edgeHub": {
      "properties.desired": {
        "schemaVersion": "1.0",
        "routes": {},
        "storeAndForwardConfiguration": {
          "timeToLiveSecs": 7200
        }
      }
    }
  }
}


	Persistence Plugin Architecture (Proposal v0.0.1)

