
Fuji Release
Code Freeze:  Oct 23, 2019

Release:  Nov 15, 2019

The Fuji release is a minor release (EdgeX v1.1) that is intended to "hardened" the services, improve testing, and provide performance measures that give 
the user community even more trust and faith in the EdgeX platform from which IoT solutions are created.

Release Themes and Objectives
Application Working Group Tasks and Notes
Core Working Group Tasks and Notes
Device Service SDK and Device Services Group Tasks and Notes
Security Group Tasks and Notes
System Management Group Tasks and Notes
Certification Group Tasks and Notes
Test/QA/Documentation Group Tasks and Notes
DevOps Group Tasks and Notes
General Tasks and Notes

Release Themes and Objectives

Improve unit, black box and performance testing - increasing the test coverage and providing the means to identify breaks, performance problems 
or other issues in the code base sooner.
Improved security features including use of Vault to store service secrets (ex:  database username/password), improved PKI management, 
isolating micro service secrets in separate secret stores and ensuring the services running are those expected/trusted.
Introduce EdgeX service self-assessment - the first step towards a program of EdgeX replacement micro service certification.
Provide for the initial store and forward functionality; providing EdgeX the means to handle periods of being disconnected from north side systems 
by holding reading data until the system can re-establish connectivity and then forwarding the captured data.
Improve upon the initial application services (and application functions SDK) - the new and more scale-able means of sending data to north side 
systems - with expectation of archiving/sun-setting EdgeX export services in the next release.
Provide example application services to get data to Azure IoT Hub and Amazon IoT Core.
Add additional device services to include BACNet, BLE and IP Camera connectors.
Restart the EdgeX marketing work group.

Application Working Group Tasks and Notes

With the Fuji release, the application services should be 100% functional replacements for export services (client and distro).  This includes 
adding the following functionality to the application functions SDK for Fuji:

MQTTS/HTTPS support (and use of Vault for necessary keys, tokens, passwords, etc.)
Compression function
Encryption function

An earlier decision not to support cloud IoT platforms directly was revisited and in the Fuji release, the new application services will now provide 
example services that get data to some of the large cloud providers such as Amazon IoT, Azure IoT Hub. Adding support for Google IoT Core or 
Chinese cloud providers like Tencent or Alibab is a stretch goal.
Although sticking with the Drools/Rules Engine service for now (see research goals below), explore OpenJDK support and update the Rules 
Engine service JVM as necessary.
Research rules engine replacement options.

Core Working Group Tasks and Notes

Provide watchers and callbacks for all config and metadata changes (stretch goal)
Update Consul to 1.4
Address some critical refactoring to include

Making sure infrastructure touching code is decoupled and easier to test
Address current typing issues that are not helpful to adding more unit testing (more encapsulated types for tests)
Setting up better transactional boundaries
Addressing issues around Value descriptor & Device Profiles out of sync when changes occur

Device Service SDK and Device Services Group Tasks and Notes

Priority of work for this release in the DS/DS SDK area is in adding blackbox tests (defined by a test plan) to the SDK (and thus device services).
Create a generic IP camera device service (using ONVIF protocol where possible)
Time permitting, additional goals (as stretch) for this release include:

Allow for the deregistration of devices/device services
Provide dynamic/automatic discovery scaffolding in the SDKs to allow device services to automatically discover and provision new 
devices at the DS creators discretion.  This may include the need to establish black/white lists of devices to explicitly include or exclude 
from that discovery.
The SDKs will implement a means to provide a cache of readings. This allows the collection and response for a request of a reading to 
be decoupled (and more asynchronous). https://github.com/edgexfoundry/edgex-go/issues/829

https://github.com/edgexfoundry/edgex-go/issues/829


Security Group Tasks and Notes

In the Fuji release, PKI infrastructure will be added to generate the tokens and keys necessary to use Vault, Kong and other security 
services.  Today, EdgeX relies on the keys to be generated elsewhere and then used by security apparatus.
EdgeX micro service secrets will be stored and distributed per service in Vault (using namespaces).  Today, all services access the secret store 
with the same key and therefore have access to all secrets.
Include technology to ensure services running in EdgeX are thos expected (and authorized).
By the Fuji release, the EdgeX community will define/design a hardware secure storage abstraction layer that will include a software 
implementation and allow platform providers to build hardware root of trust implementations that can be used by EdgeX to protect the Vault 
Master Key and other fundamental system secrets used at bootstrap time.
Add documentation defining, a higher level, what security features EdgeX offers and what is the security feature roadmap of EdgeX.  Additionally, 
the community will renew/refresh a threat assessment.

System Management Group Tasks and Notes

Refactor the SMA executor to accomplish Start/stop/restart tasks by the executor (to include stop/restart of SMA).  This requires the executor 
track completion of the operations and returns results.
Refactor metrics collection - moving metrics collection to the executor so that it can remain platform and even service implementation agnostic.
Add the ability of the SMA to set configuration (when the configuration is writable).  Today the SMA can only get the configuration information 
from each service.
As a stretch goal, add an SMA Translation layer.  The SMA will provide a translation layer (implemented via necessary abstraction) to offer the 
SMA API (and associated data) via other protocols starting with one protocol (like LWM2M or SNMP). In effect, SMA will provide access to SMA 
API and control plane data in a fashion similar to how Application Services makes data plane available to 3rd parties in a fashion dictated by 
those 3rd party clients. https://github.com/edgexfoundry/edgex-go/issues/835

Certification Group Tasks and Notes

Provide self-assessment of device services by EOD 2019 (with a stretch goal of self-assessment of all services).
This effort requires device service black box tests in the Fuji release.
Create a web page highlighting 3rd party services that have been self certified
A certification program - once in place - will allow third parties creating EdgeX services to verify their services as alternative or enhancing 
capability to those provided by the EdgeX open source effort. This will allow 3rd parties to add value (proprietary or open source) to EdgeX that 
customers can rely on to meet the EdgeX APIs and work without additional code change (enable a plug-and-play ecosystem). Various levels of 
certification are being considered, from micro service replacement certification (validating alternate or commercial implementations of EdgeX 
micro services satisfy API requirements along with performance metrics and quality checks) to full EdgeX deployments (for commercial versions 
of EdgeX). Additional certification processes may be developed around particular cross cutting features such as security.

Test/QA/Documentation Group Tasks and Notes

Improve and increase performance metric capture from all services.  The goal is to, by the Geneva release, be able to answer 3 primary 
performance questions:

Will EdgeX fit on my system? - size of EdgeX services, infrastructure, etc. and hardware/platform requirements
What is the speed of data through the system? - from device service sensor data ingestion to the rules engine and back down through 
command to another device service to trigger a put command, how long does this take?
How many “things” can be processed at a time? – with caveats on the type of thing, type of data, etc.

Improve blackbox test structure including reorganization of the tests and better test case documentation.
Create a new test framework (e.g. Robot or Cucumber) to support additional types of functional/blackbox and system integration tests (e.g. 
Device Service or system level latency tests).
Remove documents from the other code repositories to its own repository
Add performance testing automation.  Specifically:

Automate API Load testing (measure response time) and metrics (CPU, memory) collection for all EdgeX micro services
Edgex micro service startup times

Improve the documentation to address some critical and re-occuring needs:
How to get started with Windows and EdgeX (VSCode install and use, 0MQ install, etc.)
Add a common troubleshooting guide – how to pull the logs, how to decipher what’s in the log,
how to check issues in docker, etc.

Add a documentation versioning tool (like Sphynix)

DevOps Group Tasks and Notes

Add static artifact analysis into the EdgeX Jenkins Pipeline (analysis of Docker /runtime artifacts, not the source code)
Add code and artifact signing with semantic versioning
Conduct build performance optimizations by:

Adding Pipelines for EdgeX Foundry base build images
Allow basebuild images to be managed locally within Nexus
Leverage PyPi Proxy for local pip dependencies

Explore static code analysis like .Coverity

General Tasks and Notes

https://github.com/edgexfoundry/edgex-go/issues/835
https://scan.coverity.com/


Move to Go 1.12 (evaluate and possibly move to Go 1.13 on its arrival)
EdgeX will move from RAML to Swagger for API documentation
Use nanoseconds for all Event/Reading timestamps (a change from milliseconds).
Update the EdgeX "Offerings" page on the EdgeX Website to highlight 3rd parties offering EdgeX products and services.
Research options for better building/packaging/using alternate infrastructure elements that would have been accomplished by Go Plugins if not for 
the fact that this Go Lang feature is not supported and apparently dying.
Reconstitute the EdgeX marketing working group - lost with the LF Edge umbrella project creation. This working group will serve to meet EdgeX 
marketing needs (event planning, promotional material, etc.) as well as provide the LF Edge Marketing Group with EdgeX feedback and insure 
EdgeX marketing needs are satisfied.
Capture unit, integration, and other testing coverage metrics so that the test coverage can be prepared at each face to face meeting.  This will 
help address the need to implement a test coverage metric in the future.
Elect a new release manager for Fuji and each subsequent release.  In order to address pace of change issues, the release manager will attempt 
to implement release milestones like "no new functionality" dates.


	Fuji Release

