
Geneva Planning Items
This is a high-level list of items on the table for the Geneva road map. They are not listed in order of priority. The actual list of deliverables to be included 
with Geneva will be determined at the upcoming face-to-face meetings in Phoenix, AZ.

Dynamic Device Provisioning
Support the dynamic onboarding of new devices which conform to an existing device profile
This eliminates the need to itemize devices in the device service configuration.toml
Also could include the dynamic re-assignment of a device from one device service to another as in the case of a moving (wearable) 
device

Error Handling Refactoring
https://github.com/edgexfoundry/edgex-go/issues/1734
Anthony Bonafide presented a possible approach in Core WG (22-Aug-2019)

Explicit Request and Response types for API endpoints
These would be defined in go-mod-core-contracts
The current models used for request/response as found in go-mod-core-contracts was extracted from edgex-go so that other 
applications would not have to import the entirety of edgex-go in order to be interoperable.
There is unnecessary complexity involved when creating requests (see devices and device services) because of requirements applied to 
the model's integrity but not necessarily the request
All requests and responses for the Core/Supporting service APIs should have explicit request and response models.

Example: AddDeviceRequest, AddDeviceResponse, UpdateDeviceProfileRequest, UpdateDeviceProfileResponse
If Geneva becomes V2, how to support V1?

Proposal – Rather than keeping the /v1 code in the various repos that rev to /v2, we should branch the most recent v1.x release into an 
LTS branch.

Subsequent supporting changes would be made there.
This LTS branch will never have any /v2 code.

The above removes all /v1 code from the /v2 codebase. Thus an application interacting with the /v2 codebase could not expect to call a 
/v1 endpoint and have it work.

Elimination of Value Descriptors
The current ask is to include the typing metadata on the event readings themselves.

Querystring support in the Event payload
The use case here is that certain device services require querystring parameters in order to obtain readings from one or more registers 
within a single device (such as Intel's RFID case)
Inclusion of the querystring params was proposed as a way to record what the source register was when the event was created

Just tracking it back to the device may not be granular enough
Configuration.toml structural changes as warranted

Specifics will be added per discussion
Example – Align security service configuration structure to standardize with Core Services

Core Services Monolithic deployment
During the planning of Fuji there was discussion related to the possibility of deploying Core/Supporting services as a monolith. Some 
prototyping was done. Do we want to pick this up?

Messaging directly between Southside / Northside
Bypass core-data, etc

Support some other messaging bus besides ZeroMQ
Environment variable overrides in order to remove the docker configuration.toml

Use base configuration.toml, override docker hosts and other relevant settings via environment vars in docker-compose.
Applicable to docker deployments only

Configuration consistency w/r/t cmd line, env variable override and file persistence
Order of precedence
Naming
Across all tiers in the platform (Device Services is outlier as of Edinburgh)

https://github.com/edgexfoundry/edgex-go/issues/1734

	Geneva Planning Items

