
Geneva

The Geneva Release is the 6 successful community release of EdgeX Foundry. It is a minor (dot) release (version 1.2) and therefore backward th

compatible with the Edinburgh (v1.0) and Fuji (1.1) releases. Although a minor release, a number of new and significant features and improvements are
unveiled with the release to include automatic device provisioning, a new rules engine implementation, and batch and forward functionality to name a few.

Release Information

Dynamic / automatic device provisioning/on-boarding
Alternate messaging support (RedisStreams, MQTT, 0MQ, …)
Better type info in sensor data collection
REST device service
Batch and send
Use of secrets for authenticated MQTT/HTTP exports
Sensor collection of an array of types
Redis as the default DB
New rules engine (Kuiper vs Drools – written in Go; smaller / faster)
Improved Security
Interoperability testing
DevOps Jenkins Pipelines

Adopter Warnings

The EdgeX community has deprecated three features in this release of EdgeX. Deprecation does not mean the feature is removed from this
release, but it is a strong indication that the feature will be removed in an upcoming release.

MongoDB support has been deprecated. With the Fuji release, the community decided to make Redis our default database. We now
have intentions of removing MongoDB from EdgeX in the near future. All code associated to storing/retrieving EdgeX data in Mongo has
been labeled as deprecated. Docker Compose files for MongoDB include a warning to let you know support for MongoDB is coming to
an end. Redis has been selected over MongoDB by the community for ARM support, memory/footprint improvements, license
considerations and because of the involvement of the Redis Labs in the project.
The Support Logging service has been deprecated. The community felt that there are better log aggregation services available in the
open source community or by deployment/orchestration tools. In this release, the logging service is not started with the EdgeX provided
Docker Compose files (it is still in the file but commented out). By default, all services now log to standard out. If users wish to still use
the central logging service, they must configure each service to use it. Users can still alternately choose to have the services log to a file.
The Support Rules Engine (which wrapped the Java-based Drools rules engine) has also been deprecated. EdgeX is partnering with the

 to provide new and proved rules engine support.Kuiper project
Redis is an open source (BSD licensed), in-memory data structure store, used as a database and message broker in EdgeX. It supports data
structures such as strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs, geospatial indexes with radius queries and
streams. Redis is durable and uses persistence only for recovering state; the only data Redis operates on is in-memory.

Redis uses a number of techniques to optimize memory utilization. Antirez and Redis Labs have written a number of articles on the
underlying details (, , http://antirez.com/news/92 https://redislabs.com/blog/redis-ram-ramifications-part-i/ https://redis.io/topics/memory-

) and those strategies has continued to evolve (). When thinking about your system architecture, optimization http://antirez.com/news/128
consider how long data will be living at the edge and consuming memory (physical or physical + virtual).
Redis supports a number of different levels of on-disk persistence. By default, snapshots of the data are persisted every 60 seconds or
after 1000 keys have changed. Beyond increasing the frequency of snapshots, append only files that log every database write are also
supported. See for a detailed discussion on how to balance the options.https://redis.io/topics/persistence
Redis supports setting a memory usage limit and a policy on what to do if memory cannot be allocated for a write. See the MEMORY
MANAGEMENT section of for the configuration options. Since EdgeX and https://raw.githubusercontent.com/antirez/redis/5.0/redis.conf
Redis do not currently communicate on data evictions, you will need to use the EdgeX scheduler to control memory usage rather than a
Redis eviction policy.

https://www.emqx.io/products/kuiper
http://antirez.com/news/92
https://redislabs.com/blog/redis-ram-ramifications-part-i/
https://redis.io/topics/memory-optimization
https://redis.io/topics/memory-optimization
http://antirez.com/news/128
https://redis.io/topics/persistence
https://raw.githubusercontent.com/antirez/redis/5.0/redis.conf

Known Bugs

Sensor readings are captured event/reading objects by device services. The event/reading objects are used throughout EdgeX to transport the
sensor data. An event can have multiple readings associated. For example, in a single sensing, a thermostat may create an event with two
readings: one for temperature and one for humidity. There are currently no restrictions on the number of readings on an event. In theory, an
event can be packed with so many readings that it creates a object that is MBs in size or even larger. This can cause the system, particularly
core data, start to slow down or even fail. In a future release, appropriate governors will be put in place to prevent event/reading objects from
getting too big. For now, users are advised to monitor the size of their event/reading objects and break them apart if there are too many or too big
of readings associated to an event. Ref # .2527
Removing a scheduler interval by ID when an interval action is still using it crashes the scheduler. Ref # . The underlying problem is that the 2520
REST call to delete the scheduler interval by ID does not perform a check to ascertain that the interval is currently in use. As a work around,
users are advised to follow the following procedure:

At the outset of interacting with the support-scheduler service, first use the REST API to get the entire interval information. For example,
let's say that the ID happens to have the value 71e5c882-61b8-4d98-a3b7-2aa68d60c5e6, then issue this cURL command (using the ID
value get the full interval information: curl --location --request GET 'http://localhost:48085/api/v1/interval/71e5c882-61b8-4d98-a3b7-

'2aa68d60c5e6
From the response received, make a note of the interval's name and use the support-scheduler API to delete the scheduler interval by
name (versus ID). If the name of the scheduler interval was midnight, the call would look like the following cURL command: curl --
location --request DELETE 'http://localhost:48085/api/v1/interval/name/midnight

The services had a set of configuration (in configuration.toml - see properties below) meant to configure how a service attempted to try to connect
to a database upon initial connection failure. A duration configuration indicated how long to wait before the next retry and interval indicated the
number of retries before abandoning the connection setup and exiting the service. This configuration did not work. A fix for this has been created
for Hanoi (), but these properties will not cause any effect today. Internal to the https://github.com/edgexfoundry/go-mod-bootstrap/pull/86
services, there was a default retry mechanism in place and that will still take place today in the event that a service cannot initially connect to the
database. As of Geneva, a service will attempts to connect to the Database approx every second and gives up after approx 30 seconds.still

[Startup]
Duration = 10
Interval = 5

SDKs, Device and Application Services

Please note that device and application services (along with the associated SDKs) can and do release minor versions independently. These services and
SDKs must maintain backward compatibility with EdgeX releases.

Check with the release notes for the SDKs for details on changes and issues addressed in each of the SDK minor releases.

C Device Service SDK: https://github.com/edgexfoundry/device-sdk-c/blob/master/CHANGES
Go Device Service SDK: https://github.com/edgexfoundry/device-sdk-go/blob/master/RELEASE-NOTES.txt
App Functions SDK: https://github.com/edgexfoundry/app-functions-sdk-go/blob/master/CHANGELOG.md

Geneva Release Overview

https://github.com/edgexfoundry/edgex-go/issues/2527
https://github.com/edgexfoundry/edgex-go/issues/2520
http://localhost:48085/api/v1/interval/name/midnight
https://github.com/edgexfoundry/go-mod-bootstrap/pull/86
https://github.com/edgexfoundry/device-sdk-c/blob/master/CHANGES
https://github.com/edgexfoundry/device-sdk-go/blob/master/RELEASE-NOTES.txt
https://github.com/edgexfoundry/app-functions-sdk-go/blob/master/CHANGELOG.md

Release Dates and Timeline

Code Freeze: Apr 22, 2020

Release: May 13, 2020

	Geneva

