
Barcelona Release
: Barcelona has been released. See theNOTE release page for details of this release.

NOTE: Barcelona has been released. See the release page for details of this release.

Release Themes & Objectives
Key Features
General Release Tasks and Notes
Application Layer (export services and the rules engine microservice) Tasks and Notes
Core & Supporting Services Tasks and Notes
Device Service SDK and Device Services Tasks and Notes
Security Tasks and Notes
System Management Tasks and Notes
Test/QA Tasks and Notes
DevOps/Build/CI/Process Tasks and Notes

Delivery: late October 2017

This first EdgeX release is focused on delivering a minimum viable product (MVP) for further accelerating community contributions. It is the hope of the
EdgeX community that with the Barcelona release, the shape of the architecture, APIs, etc. are such that the larger IoT development community will feel
comfortable exploring and contributing to EdgeX and begin planning integration of the EdgeX foundation with their own IoT projects and offerings.

Release Themes & Objectives

Stabilize the original seed code for the EdgeX platform
Establish dev ops practices, build environment and versioning
Build community understanding of the platform and code base
General majority agreement on the architecture
General majority agreement on micro services and APIs
General agreement on longer-term performance targets and technology choices
Progress towards the definition of unified APIs for security and system management

Key Features

Stabilization of key APIs
Better code quality, fit and finish
More than double the test coverage across EdgeX microservices
Addition of reference Device Services supporting BACNet, Modbus, Bluetooth Low Energy (BLE), MQTT, SNMP and Fischertechnik
Extra “north side” Export Service interfaces that provide connectors to Azure IoT Suite and Google IoT Core as well as support for connections
via MQTTS and HTTPS

General Release Tasks and Notes

Supported OS
Windows 10 (latest 2016 version)
Linux, Ubuntu 16.04 classic (but does not enforce secure boot)
EdgeX supports and welcomes other OS providers to test and validate EdgeX works on their OS
Example, Canonical plans to test/validate EdgeX on Ubuntu Core 16

Supported Hardware
Intel x86
Stretch goal: Arm Note: work to port to Arm is nearing completion although the automated build environment needs further attention.

Performance
No significant performance-specific work will be accomplished in this release (unless it is easy to achieve with no other impacts)
Provide early performance estimations for alternative Go Lang implementation of microservices
EdgeX will use current scalability metrics on devices, collection, etc. as scale guidance
More formal scalability concerns to be addressed in future releases

All microservices hardened; meaning
Works properly for the intended use case
It may not be 100% complete implementations for all use cases or parts of a protocol for example, but it provides enough implementation
to sustain the demo use cases for Barcelona and could support extension to the full needs or protocol in the future
Handles errors and exceptions gracefully
Contains proper unit and integration tests
Follows good coding standards, and is well documented
Following some prescribed standard (like Oracle, Google or Twitter guides for Java)
Performs within the target measures established for Barcelona
Code base is not exploitable
API set is solid

Application Layer (export services and the rules engine microservice) Tasks and Notes

https://wiki.edgexfoundry.org/display/FA/Barcelona

Harden as defined above
Provide Azure IoT Hub integration (improve/clean up functionality in the original seed code) and support for Google IoT Core
Provide routing to endpoints by device ID
Support MQTTS and HTTPS for endpoint distribution
No additional formats/transformations/filters/etc. will be provided beyond what already exist in the export services today
Provide guidance on number of simultaneous clients that can be supported (to address any potential scale problems with the export services)
Stretch Goal: binary message format distribution (picking one to start)

Core & Supporting Services Tasks and Notes

Harden as defined above
Fix known bugs (logging OOM, …)
Remove/clean up unfinished features (Device Manager)
Complete at least one full replacement Core Service in Go Lang to feed estimates on performance trajectory

Device Service SDK and Device Services Tasks and Notes

Harden as defined above
Provide set of reference Device Services (Modbus, BACnet, BLE, MQTT, SNMP, Fishertechnik, and virtual device)
Clean up SDK (and Device Services)

Improve documentation
Be more developer friendly (see improve tooling - stretch)
Merge device-sdk into SDK tools
Cleanup scheduler

Apply cleanup back to DS (with exception of BACnet and BLE)
Stretch Goals

Improve tooling (Eclipse Plugin)

Security Tasks and Notes

No implementation provided with this release
Build the longer term roadmap – the EdgeX security story
Agree on overall security requirements for EdgeX
Agree on what security features are going to be in EdgeX and what’s going to be provided by the platform that EdgeX runs on (example: the
underlying platform must have a keystore)
Further definition on what EdgeX security service(s) need to be eventually implemented (e.g. modules for data protection, identity and access and
operational security)
Further definition on what security hooks need to be added to the existing microservices (e.g. APIs)
Further definition on standards, protocols, etc. that are going to be adhered to and followed by EdgeX (ex: IIC specs, OAuth tokens, etc.)
Guidance on how security features can/should be tested

System Management Tasks and Notes

No implementation provided with this release
Agree on overall requirements
Agree on what features are going to be in EdgeX and what is reserved for OS, 3rd party systems, other open source systems, etc.
Define what system management services need to be implemented as part of EdgeX (if any)
Define what system management hooks need to be implemented
Define any system management standards that will be followed/used in system management implementations (ex: LWM2M)
Stretch goal: add some simple system manage hooks/capability into BaseService of EdgeX micro services – based on Dell Fuse work (for
service start, stop …)

Test/QA Tasks and Notes

Unit and integration tests for all microservices (all public methods)
Implement Blackbox testing

Select and/or implement black box test framework
Testing must occur on all supported MVP platforms
Setup performance tests for capturing performance metrics of a micro service or combination of services

Have check styles in build process
Setup Bug tracking system

DevOps/Build/CI/Process Tasks and Notes

WG allowed to setup their processes (Agile, Scrum, etc.) as they see fit (no community wide process for now)
Automate build of code and docker microservices
Implement standards on code commenting, branching, versions, …

Adopt and apply the Google code standards (aka Style Guides) for all code
Stretch Goal: Automate build of API documentation (Javadoc, raml-doc ?)

	Barcelona Release

